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[FOREHORD)|

-

The collection ceptains articles devoted to the strict theory of
diffraction of electromagnetic waves on conductive bodies,

The V. A. Fok report explains the mathematical apparatus allowing
beundary problems of electro-dynamics in tﬂe system of coordinates of a
rotational paraboloid to be solved., As an example the authortoffers a
detailed analysis of:%he electromagnetic field'excited within a rotational
paraboloid by means of a radiator (emitter) orieﬁked in its focus.

The M, Ge Belklna - L, A, Vaynshteyn report discusses the radiation
characteristics of v1brators and slots oriented along a conductive sphere.
The report offers numerous characteristic graphs plotted acc?rding to con=-
yentional diffraction series and in accordance with formulas obtained as a
result of asymptotic adding of these series,

The M, G, Belkina report offers a solution to the problem concerning
a dipole oriented on the axi's of an elongated rotational ellipsoid or disk,
In this report the radiation characteristics are calculated (for a majority
6f cdses) allowing the effect of an elongated body on a field of a radlator
situated near it to ee estimated, A new solution is also given to the prob-
lem concerning the diffraction of a plane wave on a disk and the numerical
resulfs are compared with the approximated theory of diffraction, The radia=-

tion characterastics of -an unilateral slot on a disk are described,

The book is 1ntended for radio-phy51cists and radio engineers dealing

in supersonic frequenqies.'

-
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From the Editor's Office

A S y '

The theory of diffraction of electromagnetic waves on metal bodies._ "
is acqﬁiring greater prac‘bicﬁal importance in recent years, especially in
connection with the development of t.ha centimeter radiowave technique,
Radio engineering has brought up a series of new problems differing from
.the classical di;:ﬁ'action problems 1:{ optics, These include problems of
diffraction of electromagnetic wave.s radiated’ by various antennas on metal
bodies situated near by, The articles in this collection are devoted to
Just such a type of problems.

The V. A, Fok article describes a new mathematical apparatus enabling
boundary problems of electrodynamics to be solve(‘i in the system of coordi=-
n;tes of a rotational paraboloid, In the second part of this report an
important problem is solved concerning a dipole oriented in the focus of
the paraboloid, A solution is given in the form of integrals and series
with a connection established between the obtained terms and thg\laws of

geometric optics, ¢

- The M, G, Belkina and L, A, Vaynshteyn report investigates the electro- -

magnétic field of vibrators and slots oriented on a conductive spﬁere. For

the flelds, asymptotic formulas, obtained from ordinary diffraction series

by the'vndth:;d of improved ptotic adding in e with ths method

introduced by V. A, Fok in his transactions. on diffractiqn, were derived,

The report con’ﬁai’ns numerous graphs for the radiation charactezt:\lsti:cs , for=-
" mulated in accordance with the diffraction series, as wéll as in accordance

. with the asymptotic formulas,

roved for Release 2013/02/14 : CIA-RDP81-01043R001700010009

The M, G. Belkina reports offer a solution to the problems concerning
a dipole, oriented on,the axis of an elongated rotational ellipsoid or
disk., The author calculated (for a majority of cases) the radiation char-
acteristics allowed an opinion to be formed on the efdect of an elongated
body on a field of a radiator situated near it.

The second report also offers a new solution to the.classic problem
of diffraction of a plane wave on a disk or circular orifice in a‘ flat
screen, The accurate results obtained in these cases are compared with the
results offered by the approximate methods of physical optics, The report
also-describes the characteristics of slot radiation on a disl,

In spite of the fact that several years have already passed since
these reports have been published and, that during this time a greater

mumber of reports on this very same subject have appeared, especlally re-

-ports on diffraction on a rotation ellipsoid and disk, the articles of this

collection still bear a scientific interest both in a methodical respect

and with respect to the mmerical results as well,
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The Theory of Diffraction of a Rotational Paraboloid
by
V. A, Fok

Introduction:

This report consists of two partse The first part describes _the
theory of parabolic functions (Par, 1-3) and presents certain analysis
of these functions (Par, L and 5). Next is given the theory of solttions
of Maxwell equations in parabolic coordi;xates (Par, 6-8). The most im- '
portant result of the first part is the introduction of the parabolic
mtential; P and Q allowing the boundary conditions to be formulated
without the aid of equations in the fipal differences which simplifies
the solution of all problems connected with the rotational paraboloid,
By introducing four auxiliary functions (Par, 7) connected by simple

. ratios with each other and uitfx the P and Q potentials, it is pO‘ssi’ble
to attain a .simplification of terms (expressions) for the ﬁeld.

Thus , the first part contains the mthematical amaratus necessary
for solving diffraction problems of a mtational paraboloid,

The second part is devoted to the pr"oblem of dipole- fediation in a

focus of an absolu’ce-reflecﬁng rotational paraboloid. The primary field
of the dipole is expressed through the parabolic potentials of the gen= .
eral theory (Par. 9). The. field potential of a reflected wive is‘expressed

first in the form of integrals (Par. 10) and then in the form of series

(Par, 11) of two types (with different convergenqe zones), The gxpres;icﬁs
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tor the awxiliary functions are also given in the form 'of series, In
. the last two paragraphs (12 and 13) a field in the wave zone is discussed
and plain expressions corresponding to the approximatmn of geometric
optics (including the first correction members) are given for this ﬁeld.
In particular,, we obtain the dependence ‘of the field amplitude upon the
distance from the axis,
At first it was intended to include in our report, as part three,
the solution, obtained by us in 194k, to the problem of diffraction of &
plane wave falling on a paraboloid from without under any given angle,
This solution also contains an approximate summation of series and a de- °
termination of the field on‘the surface of the parabolo:[d in the zone of
‘sem-éhadow, which is of importance in c’onnection with our established
~princip1$ of a local field in the semi-shadow zone, However, in view of
the comiderabls volume of the ﬂrst two parts of our report we found it
a.dvisab].e mt to include this third part, In the role of a brief resume
of the content. of the third part we rei‘er to our -report on the distribution
of currents excﬁ'ed by a plane wave on the surface of a cohductlve bctw,of
any given form (1). '
Part 1, General Theory
Par, 1, Parabolic Coordinates, )
 The le‘l;teré X, ¥y z will designate the rectangular coordinates and we
; will write the rotary paraboloid eqpation in the form of .

x24-y?— 20z —a?=0.

ved for Release 2013/02/14 : CIA-RDP 1043R001700010009-9

VAith the letter k we designate the absolute value of the wave vector

k=3, (1.02)

o

(where lambdao is the wave length) and we shall introduce the following
vz;lues in the role of variables: first, the angle phi between the sur-

face passing through the axis z and through the glven poiﬁt s and a certain
fixed surface passing through the very same axis (e.g., the surface x0z)3

this angle will be the same as in ordinary cylindrical coordinates 3 secondly, -
the parabolic coordinates u, v are comected with the rectangular ones accord-

ing to the following formula

u=Fk(R+2);, v="k(R—32), (1.03)
’=7L-Vﬁ; z=zlk(u—-v); R=2—]ﬁ(“+v)v (1.04)

r=Vx+y% R=Vitiyria (1.05)

The rec‘bangular coordinates are expressed through a parabolic éeéording
to the formila . : . B

x.—_—lTVu_vcas(pp y=—IITVu—usin<p; z'=2—z(u—-v). (1.06)
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The coordinate surfaces u = éonst and v = const represent a systex;\
of mutually-orthogonal paraboloids of rotation,  The equation of the

pavaboloid given (1.0L) has the form of

v=uv, TAe uo.-_-.ka, (1.07)

as can be easily verified by diréct substitution of (1,06) in (1.01).
The zones, external with respect to the given paraboloid have corres-
ponding values v >v,3 the internal zone has corresponding values
v < Voo The variable u changes within O é u ( infinity.

The square of the linear element in the parabolic coordinates has

the form of

ds’:k—lz-(%l’ du? + CEL dort- uudvz) . (1.08)

As always during the utilization of curvilinear orthogonal coordinates
it is convenient to distinguish between the projections of the vector in
a given coordinate direction and the covariant components of the vector
(the~lattef are converted as partial derivatives of a cex:tain scalar
function in accordance with coordinate parameters). The projections of
the physical vector will be enclosed in p&refx’cheses, €oBes (5“ ), (67,:)
(f ) leaving the designation& .44)5’9;6 ? for the covariant components,
Then 1t will be '

ved for Release 2013/02/14 : CIA-RDP 1043R001700010009-9

and analogously for other vectors,

Par, 2. Parabolic Functions with Continuous Parameter,

28l ce 2ATAD0 e ——

The Laplace operator in parabolic coordinates has the form of

Ap=2E

consequently, the equation of oscillations
AY + k=0

will be written in the form of

S (u3)+ BB HEH) R

Assuming that

Y=U@W V(@) e

5
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(2.03) " L
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and substituting this expression in (2.,03) we become convinced that the We shall first discuss the.solution of equation (2.05), finite at

variables in equation (2,03) become divided and we obtain for the func- = 0. Thus, assuring tha role of the solution the function will be

tions U.and V equations

U=Et(u, s, t),

dau du 3 o t >
um_{_#_“_.,_(Tdﬁ 5)U=0 (2.05)

e

L eV | av v. st t\y_
"T'”T+"_"+(T_‘7-—?)V_O @09 E S RWIEI TR
s s
r(FEE) (T

E(u, s, t)=

= =

1
where t is the parameter which was formed during the division of the XS 2z T (1—2) T de (2.07)
¥

variables,

In order that solution (2,04) should be a synonymous function of Brealfing down the integral into power series we will also obtain

the point in space it is necessary that s be a whole mumber (whereby in il
‘ . o L4k o (1
equations (2,05 and 2,06) it can apparently be considered that a>/ 0). tu s t)_e"”:‘z 1"“2 1.( b3 -Ht)
. : , 8, )= — T
] r(fizi“— rLA+D

The pu-aineter t can be arbitrarily substantial or a complex number. In : . k=0
- (2.08)

many cases, however, it is convenient to introd integral rep: tations

of solutions 'in which s plays the role of an integration variable, - Keep~
. —1s4 2
# Eu, 5, t)=¢e uzr(;:_])F(s—*'—lzL“—, s+1, iu)._
of the varisble s, - . : . B (2.09)

ing-in mind these cases we will consider U and V as amlyb:f.cal functions
For the i)mctidna U and 'V equations of one and the same type (they . .

differ from each other only by the sign at t) were obtained, The solutions y I B where f (alpha, gamma, chi) is the series, compiled i accordance with the’

of these equations are thoroughly discussed in litérature (e.g., in (2) : law

and (3). '

y (2 2
Flo 1 9=1+3 543505+ @10
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By changing the integral (2,07) z into 1 - z it can be easily shown
that at essential values u, s, t the valwe xi (u, s, t) will be sub-

"stantial, It is evident from formula (2,09) that xi (u, s, t) will be

_an integral trapscendental function of ¢ and s, .
We will now analyze the second solution of equation (2.03), namely,

the solution which at greater u has an asymptotic expression con.aining

in

a multiple e’ 3 Such a solution can be obtained provided we carry out

an integration in (2,07) according to z within the boundaries not from

0 to 1 but from 1 + i infinity to 1, The constant mltiple factor in

front of the integral can, of course, be selected in a different form

than in (2,07). Converting the integral by substituting

.
l-z=% Bt
=cc

nd by selecting the constant miltiple in a proper way the expression

. —.%l—x'flu
CGuy s, )=e F (2.11)

may be used in the role of a second solution where

s—l—it sl

_ ] ?
)e Ty (1.+1§) dx. (2.12)

Fpo=

The expression (2;12) can be broken down iito an asymptotic serles accord~ .

1

" ing to powers 3 applicable during u—» infinity, namely, if we write

- 1 @ 1 a1 n 1
Fw(“-p»‘;)=l+TF-;‘+LI),ELL+—)‘:—,+-~-.

ved for Release 2013/02/14 : CIA-RDP
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then expression (2,12) will be equal

1—s—it 1 — it
Fao Fn(—i , =t (2.14)

_’_)
i)
The function zetal,(u, s, t) in contrast to xi (u, s, t) is also
complex during substantial u, s, t,. Among others, the function satisfies
equation (2.05) with substantial coefficients, It is evident, therefrom,

that function ) ‘
JERE.APPPE 25 SR N AP
Ly, s, t)=e ‘ fu ‘e zx

. \—s it 1bs4it 4
Xan(——‘—z L g, (2.15)

obtainable from zetaj (u, s, t) by changing i into - i will also serve as
a solution of this equation, At any given u, s, t the functions zeta) and
zetay will be linearly independent integrals of equation (2,05), Just as
the functions of par#n»eters 's and t the values zetal and zet:a2 will be,’
like xi, integrgl transcendental functions, By changing thé sign s we

will obtain

G, —s, f)=e

) @.16).
i, —s, )= Colu, s, 1), .
. i

We will establish the relation between the mpctions xi, zotay a{ﬁ{& zétaz.

We then have

@in.." ;- '
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Taking into consideration equation .(2.17) ard an analogous equation with
a reverse sign at a and utilizing the ratios (2.16) it is possible to
express

Goso ) Sy s, 1)

k@, s, 1) w b, —s, 0.

Gl s )= g

Tk;élﬂlvalue zetag will be derived, therefrom, by changing the sign a£ i.‘
ff, u‘ndgr xi we comprehend here the series (2,08) then for zeta; (\;, X, t)
formula (2.18) offers a break down according to ascending powers u, When
; tends i;oward a"whole nunber the right side of (2,18) shows a tendency

’ toward th;a final boundary;‘but, after converting to the boundary the
series for zeta; will contain 1ogar1tmc members,

Between the functions xi (u, s, vt) with parameters s, differing by

+ 1, and with parameters t, differing by # 2i, there exist different re-

curreni ratios of which we will mention the following:

1043R001700010009-9

2:11,% E(u, s, )43, s, )=
g, 5, t 2,-)+_S_i'_—.,. tu, s, 0420, (219
ik, s 0)= ‘
Uk, s 1+ 20), (2:20)
tu, s, l—{<i)=!;’:t_5(lt. s—1. 1),
2.21)

t, s, (—i)--i(u, s, ) =iVutw, s+ 1 0. (2.22)
sometimes convenient to introduce the function
$, s, 1)=l'(’——""%’—')5(u. s 0, (2.23)
into the calculations instead of xi (u, s, t) which will no longer be
an integral transcendental function of s and t, Recurrent -ratios for
psi (u, s, t) can easily be obtained from (2,19)-(2,22), These ratios,

however, such as psi (u, s, t) are also satisfied by function zeta’l

(u, s, t), Therefore, we will have

2115‘:—!1 s 45w s n=

=5 (s, (=20 + lT(!+ Vemi(s—1 —!-)t)(,(u, £ 1420y,
: (2.24)
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), s, )=
=, s, (= 20) =4 (SN emin(s <14, s, 1 4-2i);
. 12.25)
e S L= D) (S i s, I D=

=yl (., s -1, (2,26)
Gl S0 =) St s, (i)

—:i;’u‘ix.(u. sk, 1)

The recurrent ratios for functions zeta, (u, s, t) are obtained from
(2.,24)=(2.27) by changing i to -i.
In order to evaluate the different integrals and series having

parabolic functions, it is Yy to have asymptotic expressions for

these functions appropriate at greater values[t] « The asymptotic ex=
pression for the fanction xi (u, s, t) has the form of
\ Ci, s ) i,)_ F I,/ 2, (2.28)
. i
where js ‘s the Bessel function, This.expressinn is appropriéte at finite
and small u_ (all the way up to u = 0), at' conditions where [t]% 1, For
functions zeta) and zeta, we will have t in the upper simi-space

ved for Release 2013/02/14 : CIA-RDP 1043R00170001000!

G s N 5 1" (i) (2.20)
N

L, s D= n l(—l_T") A

X ANV Tany — o (V 2un) (2.30)

and in the lower semi-space

=

G, s, l)=%e B l'(#)x

X AHY (V2 — e~ "HP (Vaah),  (231)
ERL T L)

2 T .
G, s, 0=“§T£ﬁ”(? (V/ 2ud). (2.32)
2

Here H§1) and ng) are the first and second Hankel i\mctiops; The values

- c oL+ it ; . oh q-
of the functions G ('—1'1&—-—) and G (&3 ) can be 0 by

their asymptotic expressions.

In axial symmetry problems and in such which lead to them, specia

role is played by functions. with the parameter s eq\‘ml to’ aero For' brevity:

we will write xi.(u, t) instead of xi (u, O,-t, and also zetay

stead of zeta) (u, 0, t) and analogously for other ﬁncﬁinf)s;' .

Declassified in Part - Sanitized Copy Approved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9
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Par, 3. Parabolic Functions with Whole Sign

‘Solving diffraction problems connected with a rotational paraboloid i ) & — b =1 VE%,,_I. e

is, for certain purposes, more ‘convenient to represent in the form of . 4 (n-}-s)Em‘—nE”_l‘J.-:]/uEn. —_

integrals ardl‘for some purposes in the form.of series, The integrals

include functions xi, zeta,, zetap, discussed in thefprecéding paragraph,
. . By combining the preceding ratios we also obtain
The series are oriented according to functions with whole signs for which y combining the preceding

it is convenient to have special designations even though they are ex-

-2 s+
. i . - .
pressed through the preceding ones, 3 p )" b @=i(nts+)u * £, 01 (0), (3.08)

Ve will write . . - —gft
b &, (W) =inu buy, oqal0) (3.09)

- . - .‘ N . e
€, ()=t s,—i@2n+s+ l))=%s—w
(3.01) The general expressions for functions xins(u) and etans(u) have the form of

s @)= 1 PG, 5, — 1 @aFsR D) 302 .

4
2

i 7
§, (1)=¢e 1‘(:+1)F(~n,s+l,—iu), (3.10)

fEa A
‘ oy () =—¢ Qr(n+ms+1)e o X
Both functipns xi ns and etans‘ represent ‘solutions for-the differentia]: -

equation . ‘ : X ﬁ[e‘*;{'ﬂ"_ (% + iu)™"" dx, (3.11)

d% dat w8 S sl . ' : T
St B B o L | o
. ! . swhere F is the series (2,10) which, in the given case, is reduced 0. 3

. . ® i
where xipg(u) is the re-gulml' solution and at u = O)et_ans(u) has a charac-~ polynomisl of the power n,

teristic, 'The functions xips(u) and etapg(u) are satisfied with uniformly fihen s is a whole number the Tunctions xiw"a and etapg can‘ be expressed -

recursent ratios which are obthined from (2.19)-(2,22), Ve have

with the aid of (3,06) by xing and eta o, The latter are expressed by

laguerre polyromials,

ou Fns | b= (145 + 1Dy, — 7 (3.04)

ou =1, s . . -

(2,;4'-s+1+iu)s,,,=(q+s+|)z”+m+nan_w (3.05) o : i LA(X)#efﬁ‘(é"x")- LT E12)

pin
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and through integral sine and cosine.

Assuming, for the sake of brevity, that

() =4, (0 e ()=, (@), @13
we have
[ . .li
0 L@=qre ? L(—iu) @.14)
n@W=—- _e—'T j'e-‘ Ll @.15)

]

be written in the form of

u

W=—re T

w
e a0
x—Hu

[

" Formla (3.15) is obtained from (3.11) by n-miltiple integration in
parts and utilization of ratio. (3,12). The formula for eta;(u) can

HWS

x+lu -

~La(—iu)

e  dx, (@.16)

2In this case the- integral in the first member is expressed through integral

sim and cosine

du
LI

u

bu

( CI(M)+lSI(u)—l—) .

(am;

"the “integral’ in- the’ dscond memper represents a polyromfal of u,

The Tirst of the functions xip(u), eta (u) are equal to

e

: . ) fw=e", s
Gw=c (1 4ia)
R . A , (3.18)
Lu)=ec "’ (l+2iu———2—u’)'
- L .
nWw)=c * [Ci(u)«isi (u)+i—;—]. I
@) =(1 + iu) i, (u) + ¢ ! K @3.19)

" (u)=(l - 2iu — u’)’qu(u) o

and the remaining are expressed through them by means of recurrent

ratios (3,05) which, in this case, acquire the form of

(@n+ 14 i)k, () =nt,_, () + (14 Dy (),
@n + | +iu)%, (w)=nn,_, )+ (CE LR O

. (3.20

The. asymptotic expressions for functions :dn(u) , etag(u) at g:réét‘er

n values are cbtained from the general formulas (2,25)=(2,28).

Ve Fave

(3.21)°
(3.22) . o

L= =)Vt u),
n, () = in HP (1 = D) Y @+ T)u).

Hence, it is evident that fhe functions xin(u) increase in modulus and

the functions eta,(u) decrease with the increase in n,

STAT
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- Pary bie Brelk Down’ 01‘ the Polnt Chancteriat.ic According
to_Parabolic F\motions 5

ﬂun wlvin; the problem of a dipoh in the focus of a_ mutuul
. paraboloid 1_.t is necessary to know how to break down the expression

N iy o “won
socording to parabolic functions,

Since vtm.l'-xpmnion does not; depend upon pai 1t bacomes clear -
ﬁn its decomposition (break down) will iincluda only functions with
the mur 8 = 0, Further, keeping in mind. the exponential multiple
in (h.m), e mtuuuy search for a break down in the form of

.-’—,;e' o S 106 Y60t (8

where £ I(t) is the function subject to determination, :
i‘t us now discuss the following representations of functions setay
* (u, t) and setay (v,-t) [ they originate from (2.11) and (2.12) ]

u

. i
( _" ‘t : G )=
';‘ T |+P) T"’po

o7
-
zs "’4’
: L]
T

Hml‘(!-%-“-) '-ll'“l ('." —f)=

I R T ']
"Sc' q T+z“+q} T.’T‘dq'_

18

oved for Release 2013/02/14 : Cl
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We will multiply these expressions by each other and integrate by t

from = infinity to + infinivy., Ve obtain an integral

+o ’ iy
= (e (58 (T G nue. —na=

5 st f (o g)dpdg. (4.05)

+oo '

) S,;, (2. _:_)'7 (4.06)

I, )= e

1
Yo+ p(T+9)

On the basis of the characteristics of a non-characteristic Dirac function,

expressed by equalities

oo
Hx) = S ety (4.07)

—o

3e0)—2 (@)= 3(p.—q), (4.08)

1
YVivpv@i
the expression (3,06) can be'interpreted as

[ =4sb(p — ) (409) -

By substituting this value § (p, q) 1n (1.05) ve obtain an integral which -

can be conditionally understood ‘as

I=4x (“"“"dp— At 4nB (uto),
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whereby, just as in the case whére'u + v > 0, the mefiber delta (u + v)
can be disregarded.
Corparing (L4.05) and L.10) and utilizing the equality

[‘Ltli["_—_‘l= L] . . “.11)
(497 (5925
. We can write our result in the form of
j‘ TO gae =t T (1)

.This result obtained by us in a non-strict way can also be proven
dna }ierfectly strict way, This can be dlscussed in the following manner.
Iet. us discuss the identity resulting from (2 25)

Lk oy (0 06 @, —D=F )+ F(t+20), (4.13)

4 for the sake of brevity is writteh
F()=Ci(u, t=—2i)% @ —0+
P (DG AR
Ubilizing the fact bhat

ch "T’ =— ch iR ';2'.:)'

v. G )G, —tdt=

5 (¢ +2i)

‘—j' o dl—j' r(z+zn Cdf—aF (D), (416)
ch > . N L

20
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because - the integral difference equals the deduction in the ‘point t =

However, according to (3.01) and (3.18) we have

utv

(et
FO=0 (@, =) (0, — )=k @i =¢ * . (417)
Substituting this expression in (4.16) we again obtain the equality

u+u +%

=‘75 G DG, =D (412)

In the integral representation (L,12) the decomposition (break down)
is carried out according to functions which turn into infinity on the axis
of the paraboloid; nevertheless the entire integral remains finite there.

From the integral representation of the point characteristic it is
easy to change over to the representation in the form of series, For
‘this purpose it is sufficient to calculate the integral as a sum of the
deductions in points t = = (2n + 1)i or in points t = (2n + 1)i, In the
first case we obtain a series

& )7, (),

and in the second case

- e'“" —zzzm(u)s ().

=0
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The convergence zones of these series can easiiy be established with
the aid of asymptotic expressions (3,21) and (3,22), The series (L,18)
converges at u < v ahd the series (4e19) = at u D> v,

Par, 5. Plane Wave Resolution
We shall now consider a scalar plane wave
’ Fm__;euu-mu+uo;a) (5.01)
and will analyze it in accordance with the partial solution of a wave
equation found in Par, 2, vBy expressing the r.ectangular coordinates
X, 2z according to formula (1,06) through the parabolic coordinates we

have
ﬂ=%(u —v)cosd8-4 Vuusindcos ¢. (5.02)

Analyzing the expression (5.01) according to cosines of multiples phi
we obtain
(umv) cos's |

Vo (Viwsing) 4

o
+2 El’ J,(V uusint)cos scp}
=
_where Jg is the Bessel function,
" The independént member of this expression should be broken down
according to functions of the type (2,0L). By writing '

Fuvreons

C,=

’ , J,(Vuosing)  (5.04)
we should have an equality.of the form

‘

[0} 'S G(u,5,0) Yu, s, —1)f{e)dt

22

(the function zeta is not included here so that the expression (5.04)
remains finite at y = O and at v = 0), The expressions*(5.,0L) and (5,05)

should_be equal at all v as well as ‘when vi0, Multiplying both parts
of these expressions by G(s + 1)v" 2 and changing over to the point

where v',—)o we will obtain . ,

s

' ls Lucois £ .
limP (s 4o 2C,=e? " u? ("-;“)’=
0" .
o0 . .
U 11t
=1 (‘__Jf > )q.c(u,s. Hf)ar. (5.06)-
o
In order to determine f(t), one can utilize formula (2,23) and in (5,06)
subsitute the integral expression in (2,07) for xi (u, s, t). By re=
E u
: 2 -i? 5
ducing the mltiplier u~ e we will obtain
(s(;, ,e-;—-u(l—fcalll=

14t =it

+e0 1 =
=Jimatfewz 7 (1—2 7 da (5.07)
-0 0 !

This equation will be satisfied provided £(t) is selected in such a way _t_ixat -

s=14it s=1=if- =

oo
Jr0z 70— 7 a=

___(slzﬂ)'a,(z~’++“)
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Vw'h‘e_re delta; (in order to avoid confusion with the angle delta) designates
N fcﬁ'e: non-characteristic Dirac function.. By deliberating, as in Par, L,
_“ohe can easily see that equation (5,08) will be satisfied provided we

write

10=-3irs (e %)" (5.09)

Substituting this value f£(t) in (5,06) we will obtain

. (5.10)

Then by subsituting this expression in (5,05) we obtain a more general
equality

,(u v) Ens 2

A (Vuvsina)= )

, T3 )
=g g s =0 (lggYan 6

The derivation of ‘this equality was not perfectly strict because we
- app].md the Dn.rac function, The result, however, can be che’cked by

direct calcuﬂat:\.on. For this purpose it is sufficient to substitute

I

043R0017000100

‘the -expression in (5.11) for psi by the series (2,08) and integrate by

tex:nxs, applying the formula

e jr(s+|+u +k) (‘+|2—“+‘('E—%.'-)udl='b

_P(s+l+k+l)(sm )”'(cos ")"’" (5.12)

The resulting double series can be transformed into a form coinciding
with the left part of (5.11). )

We wish to mention that formula (5.11) is correct not only for whole
non-negative s, but also for all values s for which the substantial (matelrial)
part’s + 1 is positive, If Re(s'+ 1) < O then in (5.11) we must select such
a way of integration which could be applicable in (5.12).

Our final result - plane wave resolution according to parabolic func-

tions - can be written in the form of

Q ‘;‘(H—V)COIJ'H Yivsinscosy
ef=e =

i | (b6 0. 0000, 0. =0+

= xsin
+22; P s DY S —-l)cosstpl(ﬁg 2)dt 6. 13)
s=1 .

Par, 6, Maxwell Equations and Potentials in Parabolic Coordinates
WE will now change over i‘mm the scalar wave equatlon to Maxwell

equat,:ons. The dependence of all fleld cnmponents upon tim is assumed

~iwt . i
in the form e , where omega = 'ck, and in further dlscussion this mltiple -.

is not written out, - _-- : SN )
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" equations in parabolic coordinates will be tritten as follows

OF, 9E,

d' ———__luH
AE, E, _
TaT"‘oTi'“"’”-

O0E, O, utU g,
ou o 5=l Ty

=—iuE,

The simplicity of solving the problem with boundary conditions on a
surface of any given shépe and form depends to a very large extent upon
the proper selection of potentials or auwxiliary functions through which

- the field is expressed, For rectangular coordimates and a plane surface

(swrface xy), it is most convenient to express the field through the phi

“and p‘si‘ potentials comnected with the Hertzian vector in accordance with

formilas

a de - e
E = gx0z “k.ﬁf L H} ~ 9xoz ‘kTy_'
[ L 91¢
=z it Gy =" ayoz I (6.03)

e 2o -
E_W"—k“ll ‘ H=5F +<ay=

. For the coordinate components of the field (see (1.09), the Maxwell

e R A AR AT

043R0017000100

For spherical coordinates R, delta, psi the most convénient appéar
to be the Debye potentials U, V through which the field isexpressed

according to formilas

Ep=wRU+ 2R iy — Ry + ZED

_o@y) , & 2, _@®RV) , _k R
Ey="3per Tsmv o7 > ‘Ho="Tgm Tis o7

=) — ksino"(’“” i, =& — sins 200

(6.04)

Both the Phi, Pse potentials as well as the U, V potentials should-
satisfy the scalar oscillation equation (2.02).
‘As to the parabolic coordinates it would be most convenient to’ intro- :

duce potentials connected not with the entire field but with its Fourier

components along the angle psi,

We will first represent the parabolic components of the ﬁgld‘i_:hmugh ‘
the Debye potentials, By changing from (6.,04) to these compor‘leﬁtt‘% we ﬁi]zl
have o ’ 7 o

E=t O+ ”’V
ut v:)V
E=t@HoU+ 5 (MU)+ e,
v v
E=2 M) +w 55 —5)

T

where we ha\},e written, for the sake uf-brevity,

MU= "”—q v U
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_The valus iHu’ iH\}’ ﬁ{psi are obtained from (6,05) by the rearrangement Since the functions U, V.satisfy the scalar oscillations equati'orytheir
of letter U and V, Fouriericomponents will satisfy equations of the type

Ve shall now decompose (break dm-m)' the Debye potentials into Fourier . i . .
’ g - 2 __ S \pye—
series of the form (L"+LV—H—E>U =0, (6.11)

o -
U'-FE U" cos sg. g where Ly, Ly designate the operators

b 2 u
- : : ) ; >, 0,1
\—.:E\""sinsv L=ty + g+
- @ 0,1
Li=vsmtg+10

will then be

It can easily be seen that the series for Eu,‘ E,, Hpsi

oriented according to cosines and the series for Hy,s Hv’ Epsi - according
to sines, Ve will have Acpording to formulas
3 U= (VY P VO =(iw) Q) (6.13)
E"._'TE:+2E‘,,"cosw: E,=...; o
" = we will introduce the values P:, Q'; and these values should satiér_v:
H,= Elf[’sin;w; . | equatitn ) )
=l . T

: SN TR TRE SO LA
- where the dotted lines (first line) designate the series by cosines; and . b . . - ‘

’in the second.line - series by sines. Finally we wiﬁ write

The coefficients of series (6,08) are expressed through U(s), V(S)

' po_ 1 (OPsy .ap,_,)"_ y
‘according to" formulas - Ps_u+:/ ( ou + o0 )"’ Q

B = e o)UY 4 2 (MUY) — e sV

P I R S P

e

E‘,"j—: —:—(u 4-v) U"’ + u—i(MU“')-}- u—;“;—vsz” (6.09) 1 . can easily be verified that if Ps-l" L

T

e «JV‘{')
du Ju

£ — sMU™ + o [ '+L iy -
: y . , . i o T\ Gu
ill:;’=~:(:‘~|-v)v‘{’+%(,\1v‘")+'%’su"’ ) ) o . e 2

= OV V) — SRS L (610 STAT

) " W oy
I”l'“ =sMV¥ 4 uu(—l)“— - u—v)

N
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then the.values Pg, Q° will satisfy equations (S.14). In other words,

‘the ‘values Py Qg satisfy the very same equations as Ps: Qs.

Ve will express the Debye potentials and the field through the values
Ps.1s Qs-l' Ve have
yo_ (V) ('”’s—n ap,_.) 6.17) .
=
* (0Q,—; , 0Qs—
vo— (Vuvl ( sy 4 s l) (6.18)

MU“)—(V‘“’) ( m?' _'i_P*—') (619

By calculating the value MU(S) and utilizing (6,16), for the electric

field 'we will have

2uEY = (Vi)' {2 2P

0P,y

(6.20)

) — (v 1o [
Y=/ {0,
500, [
+-2' du —s ﬂu;v +7’?""}
Analogoua expressions a.rc obtained for the magnetlc i‘ield

2UuH = Vuu)' { Q_,—s 25%7;—'
3P_ 0P,
~$Quts l;u‘+; =

(Voo {'— ko '—17‘%3“_

s DP, 5 ] (6.21)

40:—‘
IH"’—(Vuu‘ Lz
: s
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nations Pg_l, Qg-l’ shere

| orp

p OP_‘_,

.v—l

-|-—uP

a'p,u, ap,_, 1
=—v—i — S — 7%

(6.22)
and the value Qg_l is connected with Qs—l just as Pg_l is with Ps-l’ It
should be mentioned that the values Pg_l, Qg_l satisfy the very sams equa-
tions of the (6.16) type as Py, amd Qgy. Since Py, and Qg have the
form of a product of the function u by function v then Pg_l will be digectly
proportional to Pg_1, and Q9. proportional to'Qgj.

The transformed expressions (6,20) and (6,21) have the advantage over
the initial expressions (6,09). (6410) since they allow a simple formula=
tion of the boundary -conditions on the surface of a paraboloid v = const,

The fact is, if we write

"P‘*’ +Q,_ =4 (6.23)

4L+ 2s %!

+P,_ _5, (6.24)

the tangential comporents of the electric field and the normal component.

of the magnetic field will be equal

— o ra o _
2y = Viy (u Gat uA+ 55—
| —afl s 0A
E"’_: (Y uv) (T B—5 W)

—_ B
2ioH'= (¢ w)’ (— Sa-y ‘,’,,‘)
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These. expressions should convert into zero on the surface of the
' .
absolutely conductive paraboloid, For this purpose it is necessary that

at v = v,, dny u A should be zero and B = O or more specific

“” Pert | q,.,=0 6.26)

QL+ 'zs—-—+sf'._. ° 627
It is very essential that the left parts of the boundary conditiens

(6,26) and (6.27) are obtained from functions P 10 Q by means of

s=1
operations which contain neither muiltiplications by the variable u nor
differgntiations by this variable®, Therefore, if we should analyze
Pg.1s Qs-l according to any given u-functions then the left parts of the
boundary conditions will represent break downs according to the very same
functions, and in order to reduce these functions to zero it is sufficient
to bring down the break down coefficients to zero,

If insbead of expressiohs (6,20) and (6,21) we would use expressions

‘(6. 09) and (6,10) and seek the break-down coefficients for the functions

U(s) v(s) then for these break-down coefficients we would 1ot have obbained

algebraic linear equations but linear equations with finite differences
which would have complicated the problem a great deal, ‘A still greater
complication of the problem would have arisen during the application of

the, Phi, Psi potentials included in formila (6.03).

* According to (6,22) the -value Q:—l can be obtained.from Qg.1 by formula )

°Q,_, GQ_,_ .
|=—v o:) —‘5—___7“01—|
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Thué, the introduction of Pg, Qs potentials gives*quA the ‘possibility
of avoiding equations with finite differences and the entire complex apparatus
necessary for thes solution of same,

Par. 7 Transformation of Zxpressions for the Field

A certain disadvantage of the Pg, Qg potentials :consists in the fact
that the e:épressions (6.20), (6,21) for the field expressed through these
potentials have a rather complicated form,

This disadvantage can be eliminated, provided we take into consid-
eration, together with the Pgy, Qg 5 potentials, also four awxdliary
functions Cg_y, Dg_, Fgy G through which the field is expressed in a
simpler way, These functions possess simple characteristics and are
connected with the potentials by simple ratios.

We will write

€y =P~ 30, @on

D,_, —Q;—|+ P, (7.02)

o, P "‘1:—.' — LB a0
F,= —;,;,U—-l- [ B (7.03)
i1 ”_’.r' +4 MJJ' (1.04)

2 Ju 2

The expres;ions (6,20) and (6.21) for the field will now be rewritten as:.’

follows ~
Lo ZME ’—(Vuu)‘ {y —uT - sF)

20— (V i ( 2%t or,)
= (@0, —sF,) :

2iull'= (} “uv)* (2 ‘5)"__ —s0 )

Dol ()’ (=2 Pet 56, ) \ (106
iH= (o) (C.-‘+50.).

(7.05)

'
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The functions Cg, Ds, Fos Gs satisfy the very same equation as Pgy Qqs

namely,
(ua%+(s+l)d%+%u)5"=
=—(vgatG+ng+g O)F. @O0

It is in itself understood that the functions Cs-lf D satisfy’
" the equation of the (7.07) type in which s is changed to s-1, The rFutios
between functions Cg.3, Dg.3, Pg.1s Qgy can be written in the form of
equalities

C,_\+iD,_,=
(3 ) Pasr 1) =
) 1) Pest Q) (08

and in the form of analogous equalities obtainable from (7,08) by changing
i to -1 (Just as if the values P, Q, C, D would be substantial), On the

other hand, from formulas (7,03) and (7.014) we obtain
P9, =(du )(aﬁ‘ )(Ps_,-f—lQ, ) (7.09) -
. and an analogous equality obtainable from (7.09) by changing i into -i,
Two ratios become evident by comparing (7,08) and (7,09)
(u —%j—s—f—")(ﬁ-{-id):
= (du 2)(6 —1 + /Ds—x):
+s+”%r+wr—-

=—(G+3)C0itiD,_y)

and two other ratios are obtainable from (7,10) by also changing i to -i.

By separating (formally) the real and imaginary parts we will obtain

+s) FA40, __a—c,_,+ D,_, (1)
s)G—-——F =D, ,—3C (12
s)]-‘ —20,=— —_c,_,—;—;—n,_‘,, (7.13)
s)G +EF=—2 D,y \—5Cy (114)

i3
8o 8o 8o 8o

+ 4+ +

—~
=

I~
e e

The auxiliary functions introduced by us make it possible to express the
field through ordinary scalar and vector potentials and also through
corresponding magnetic potentials, The i‘act is that the field with para-
bolic ‘components

E,=EYcossy; E,=Ecossg; E,=Elsinsg, (7.15) .

i, =H%inse; H,=Hsinsg; H'=H(:’ coss¢ (7.16)

can be rgpresented in the form of

- E':.xka-grad Ay H=curl A, (7.17)

“divA=ikdy _ (7.18)

as well as in the form of

E==cuflB; H=—itB-tgradB,, (.19~

divB=ikB,, : (7.20)
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whereby the electric potentials are equal

A,=iD,_, (Vi) cos(s— ),
A, = —iD, , (Vu)'sin(s— ¢,
A,=—10,(Vuv)' coss¢s

Ay == —F, (Yuv)' coss¢,

(7:21)

and the magnetic potentials

B, =C,,(Vuv)'sin(s —1)w,
Coy (Vv cos (s— 1) g,
—F, (Viw)'sinsg,

By=—i0, (y,uvy'sin s¢

(7.22) .

Par, 8 Series for Potentials and ‘for Awciliary Functions
If the potentials for Pg_;, Qg are known one can then easily de=-
-rive analogous series for the values Cg_ 3, Dgy» Fgs Gg from the series
arranged according to parabolic functions,
' For thei.sake of brevity we will write
. * - ‘ . . N ) R . . )
oo ) =G o) T @EL ) 80D '

We have. then, on thevl.:auis of the differential equation (3,03),

(o o1 =5) () i 0o D, 890
: ,.

(ot +-'4-"*"?"‘.(x"%)1u,=”‘i~ e,

[

: CIA-RDP81-01043R001700010009-9

(8.04)

(8.05)

Thes? ratios will be satisfied by function ch:‘Lns provided we c}_ﬁnga
ons or both. ’dns functions to etans. F\xrther, under chins we will understand
one of the four functions obtained in such a way, )
As—suming tﬁat a >/l and assuming th;t the series for Fs-l and Qs-l

have the form of

P TP 1.
,

=Nt 6O
,

Applying the above formulas e will obtain

Cooyt D,y =i Y1 + )0+ 9 s, (BOB)

C,_,—iD,_=i 2" (I’n_‘ iq,;)ln, PETE (8.09)

and also

_ F,t+iG,= 2(" +8)(Py +19,) L (8.10)

o . .
Fo—iG =Y n(p,—ig, ) tpy,- -~ BN
1.

.

37
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_The latter formula acquires a specific meaning only at P, = iq,
because the value "Chin-l,s‘ is specific only at n # 0, )
Ahalpgops_ formulas for the auxiliary functions are obtained if the
. séries for the potentials Pg, Qa are oriented according to functions in
conlpléx Eon;jugatién with Chiy oo '

{xsswgi_.n'g we have
= 2 [ 8.12)

Q.-I = Eqn ill.'l-—l N . (8. ls)

n-it will be
C i

CoatiD,, ‘=—‘EC' (Poti9,) 7, ‘ "
Con iD= =i Y@ +9)p, —ig) T’y B.15)

F,’+ia;=2"n(p;-+tq; ot @.16)
B 2 M

Fo—i0, =Yt ) pu—ia )20 @D
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In conclusion, we shall present formilas for the derivatives of the
series arranged accoxding to Chi,g functions, If r and z are cylindrical

coordinates then we have

If F is a series

F= 2 a, %, (u, v), (8.20)

n=0

then, generally speaking, the right part of (8.,18) is a series of the

very same form

0
2 OF _ OF\ _;
i (u i "a_u) ;tEbnx",(u, v), (8.21)

n=0

and the right part of (8,19) is a series arranged according to"Chin,s,,l

functions, which we write in the form

2 (oF | OF © ’ .
. T (ﬁ + w)= 2 2 Ca Xt (6 O)- (8.22)
. ) n=0 . .

The clause, generally speaking, is necessary because our statement
is true without _resez'vatiops;’but., only if Chipg has the form of (8,01),

i.e,, if this value is composed of xipg functions, However, if Chi o .

includes one or two etajg functions then the. formulas (8,21) and (8,22) -
are correct only at a condition where a, = 0, ! T s .
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In order to find the relation between the a, and by we will set-up
‘an expres.smn 2(u g:f— g—j—‘ ), where F is the (8,20) series, and
we will utilize the recurrent formula (3,03); on the other band, we wlll
multiply the .(8,21) series by u + v and utilize formula (3.05). By ad-

Jjusting both exptessi_ons for

2 (l oF’ vy‘)

du o,

we will obtain
A48, by = by (8.23)

In an anlogous manner by means of recwrrent formulas (3,08) and (3.09)

we will obtain

== ®24)
We .ca.n conclude, thereform, that

' i h;“_-—.c"—{_cn“--}- const. (8.25)

If Chipg contains only xina functions then the series (see circle)

should coincide and we then have

c,== i a,; by=u,+2 i}a,. ©(8.26)

$ry®) k=ntl

Analogous transforms can be applied also to integrals, but we decided’

not 6 waste any time on this matter,
Part 2, ADipole in the Focus of a Rotation Paraboloid,

Par, 9 Primary Field from the Dipole

We will consider a dipole, oriented in the beginning (base) of the
coordmates and having a moment directed .along the axis x' (perpendicular
to the axis of rotation).

Approved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9

The magnetic field from the dipole is expressed by formilas

K 34, o ’
H=0; H, =2, & ©.01)

.
S o H=—%y
thruugﬁ the vector-potential having only one coinpomnt different from

zero

where ‘C is a certain constant,
The covariant parabolic components of the magnetic field are deter-

mined ‘ from formulas

H=— 2/ 5 %A sin gy,
20H, =2y w3 9sing,
1 A 0A .
__2;/uuu+u (u 5= —-udT)cosv,
nd the components of the electric flald are derived from these formulas

by applylng the Maxwell equations (6 02). Further y We'will require both =

. accurate as well as appro:dmata terms for t.he pnmry field a hall,

' therefore, write them out in full, Ve rave
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) ot (
é 7 u—v u—o
uE,=CVuve  cosg ('H'_")'+6i(uTv)‘+
4 8 12 (4 —v)
w+vy @+op  (utop
ot —_ 'uzﬁ u—
20E,=CVuve cosq:{ (u+v)’ —6i T u).+
‘ “__ 12— )
+(u+ v) (u+v)'+ (u+_v)1}'

. - “# 1 - 2 4
E,=CVuve * sing|z7v + G G

+ o
2uH, —CVuue 2 sinep{“_:_u-f-%)—,},
Jute
. e L
20H,=CVue * smcp{-—m—(“—i—'u),),
ﬁ'—CVﬁel#co { (w—0v) _ 2i(u—v)
v S oy T T

It is necessary 10’ express the primary field from the dipole (as well as
the total field including the reflected wave) through potentials P, Q.
The dependence of the total field upon the angle psi will be the same as
for the primary field, Assuming that in (6,20) and (6,21) s - 1 and
omitting the signs at P and @ we will have

—an’ﬂ-w—

cos 9, 1(9.06)

o Lop La' .
~ Budvi ——Q+ @tz apsing

sing,

; It i ] Q} cos ¢
©an
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In this case P and Q are the functions not depending upén psi and

satisfying the scalar equation of oscillations, wh).ch can be uritten in

the form of

L L)P=0; L=+ 2+ fu. (9.08)

- . N 3
Aécording to general formulas (6,22), the functions P*, Q, are

connected with P,.Q by the ratios

pr=LP=—LP (9.09)
'-—I.Q——LQ (9.10)

These functions also satisfy the scalar equation of oscillations;
The 7formulas for the field will become simplified provided we' intry-
duce auxiliary functions (7,01) to (7,04). In this case we will write
0=S: Dy==T (9.11)

and we will retain the designations Fl and Gj. Thus we assume that.

s=pP—3Q. 9.12)

TEQ AP ¢ ©13)
14Q )14}
4 TPtam . SR

V0P ¢ 10P i '
+'_Q‘ 2du+ 7 ot (9.15),

Jugv

i (lndu

\‘liﬂ; these designations we will haves:
i 2k, =V (235~ P )eobs |
‘E, =;'ﬁ( 2”—S—F)co§:‘?‘
E, —Vuu(l‘ Fl)sin?

2iul, :Vuu 2 dT—V-G1 sing; !
fult, ?..

) II‘_=Vuv( 2—,——6. s\nv

il =V (S + G coss. -
-3
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. Ve will find the values P = F°, Q = Q° which correspond to the
' fi;ia olv: f:he»ﬁ‘ee dipole (without reflected wave)., It is evident Mm
formuilas (9.,05) that
_ RHy=uH},+vH, =0, (9.18)

as it should actually be because the magnetic field from the dipole does

not possess a radial Thus, the sum of the first two expressions
(9,07) for the primary field should be equal to zero, This cpnditidn'can
be met by writing Q° = O, Regarding the value F°, it is not difficulf
to prove that formuilas (9.,07) will coincide with (9,03) or with (9.05),
1f we should write

Tukp

=
p=-2¢7 =cn, - (.19

Tutv

.where /] is the point characteristic, di d in p ph L, The
awdliary functions (9,12) to (9.15), corresponding to the found values

. PP, Q°, are equal

s==Ce'#(2ru—v> t—o)
K T TR (9.20)

uto
=3

e ©21)

‘Tu= c

T
—_— 2 4 2 -\- bl

=Ce 7 (wrm—utom) ©22)
=0. C (9.23) -

The o;dixia:ry electric, potentials, calculated accord{ng to formulas (7.21) _

with qun_sigeration_of designations (9,11) appear to be equ‘ai (congruent)

ved for Release 2013/02/14

(9.24)

uto

4 2 — '
—Ce .(m— m) Vuvcose, (9.25)

which is in conformity with (9.,02).

Par, 10, Expressions for the Field of a Reflected Wave
in the Form of Integrals L .

We- shall find expressions for reflected wave potentials in the form
of integrals, For the potential F° of the primary wave we have, according
to (L4,12), an integral representation

e ® dt
iy 2
e ? =% S—M:. (@ H% @—D. (10.01)
ch 3~
—
The overall field is written in the form of
P=p 4P
- o= + } (10.02)
where P' and Q. correspond to the reflected wave, It is evident from
considex:ations of geometric optics that the reflected wave should have a
phase multiple .
(10.03)

But this multiple has. an asvwptotic expression of the function

u—v

L= _
b 8 (1, 1) (v, — 1) = (wv) ° T T (). (1008)

Ls
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. : \ ! s s
we will thercfore search for'P, Q in the form of integrals

b . .

p="Z &"'wl’:iu W OG @ —nd (1005 -

2eh7 )

=% j' f&:, ()& (v, —Ndt.  (10.06)
2

w0

where the unknown functions p(t), q(t) are subject to determination from
boundary conditions. According to the general formulas (6.26) and (6.27),
the boundary conditions for the absolutely reflected paraboloid have the

form of

2% 1 q- ——-2&(npu v=0,),
4@+ 2324 pr=— P (np v=1).

(10.07)
(10.08)

. '
Hore the value Q'* is equal

Q'-=L Q= -‘f— j a0 c.(u.t):,(u,—n.u. (10.09)
ch

—o0,

By changing into boundary conditions the'expressions (10.05),"(10.06)
. and (10.09) for P', @', " and assuming that the value v in them is v = Vo

then for p(t) and q(t)'ue‘ will obtain equations )

p(l) . +a(0%= ‘ (10.10)
1

p(f)wvm_@:’, — )=

46

ved for Release 2013/02/14

where,-for the sake of brevity, we will write

(;=!|(v°. =1 :;=(%:L)) ao.tn

5 1
and in an analogous manner for zet32 and zeta 5.

The solution of equations (10,10) gives
—ti A GG
t =—.‘.”’—_
P t;—

10.13
=gy +4,;;;, .13

(10.12)

It shouldr be noticed that the numerator of the fraction for q(t) is ‘the’
Yrenskiy determinant which is equal
. .
G — % = — e doe
The substltutlon of the values p(t);: q(t) found'in formulas (10 05) al
(10, 06) offers reflected wave poten'hals and at the same time also a

solution to our problem,

Par. 11.Representation of a Solut:.on in the Form of Ssries .

semes.’ Smilar to that which has been do;

of, deductmns in pomts t-= (2n + l)i in the Py

Declassified in Part - Sanitized Copy Approved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9
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the calculation it ‘is necessary to keep in mind that the general de=
nominator of the functions p(t) and q(t) has a simple root in the point
4 = = i and has no other roots, Thus, the pols t = = 1 appears to ba?
double whereas the other poles will be single (simple)s

Ve will first find the deduction in the double pole t = =i,

Tt is pot difficult to. conclude from formuilas (2.11) to (2.15) that
poar b = =i it will be

v]1+(—%+-;—lgu)(l+i)+... },(1;.01)
(’(u._{)‘::e“'%{l_F(;.'_.%]gu)(t+l)+<.. } (11.02)

@, D@ —l)=e"%{l+—;-(t+i)lg(uu)+...}.
L (11.03)
‘\The common denominator of mnctioﬂs p!'(f:) and q(t) can be written -as
follows ‘ » X
o G 2:':;-)2 A =—2 et )X
X‘{l—li—(t -{—l)(‘%+llg'vu—.‘::+—L)+..‘}. (11.04)

2
2vg

The values of the mumerators p(t)-and q(t) at t = = 1 are equal according

—
—~—

i
@ +10) (25 410~ B, —GG) =g, (1108)
2~ = — e o (10.08)

Yo

AL

e PR A GRS

Consequently, in the proximity of t = =i it will be

) e

%,_a;-'"p;,;,‘-k.'l‘.”" " (iton)
. e::'+qw.-|—:.., " (11.08)

where p,, and g, are constants, the values of which will not be de-
termined by us because they drop out from the expressions for the field.
Substituting (11.03), (11.07) and (11.08) by integrals (10.05) and (10.06)

we obtain values of the deductions in the point t = -i, namely,

—v

e
P;,=2ipre

) .
? +%c""~e 2 lg(uu), (11.09)

=3

= 145 .
Qu=2iCme * e T lglo. (L0

These expressions contain logarithmic terms and do not remain finite

along the axis of the paraboloid, However, the values S, T, Fl* Gl com-

piled n'o;x ?hese temms according to formulas (9,12) to (9.15) do not -
cyntain any;lo‘garit}lznﬁ.c terms (members), Therefore, .the,field cbrres_pqxﬂing‘
to terms (members) P'y, and Q‘AOO in the poﬁenfi;als will _aiso be finite,” *
For the ‘eleckric field, for example, we obhain Pt 5

"

, R _
2 (E,)y= % cfe V uv cos g,

‘“ — . Wt
20(E;)0=v£cff"'e wcos 9, ar
v PR AU .
- - ' e
- (AN =.—f—“e"'-c Vuosing, |

which corresponds to a plane wave polarized in the direction.of axis x,
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’ The calculation of deductions in poles t = «(2n + 1)i, where
n = 1y 2, eee is MOL connected with any difﬂ.cultiea. Employing for=
milas (3.01) and 3,02) we obtain the following series for the reflected
- wave pot.eﬁtials.

p=py+C YR @R (a2

Q= '(+cg qﬁ’E,(u)?,(g)v (1.13)

e

=2 (=D (L
i P gl + 0 (119,

' A caleplation of the values Py, 4, give§

. (11.16)

I 117,
e A

:whgre jl;he va;hie Vv, appears to ke tha» argument of functions xin, etan.
We like to poipt out that the denominator of value Pps ancan be represenfed

.as

i (2n4-1)E =

LA, — A DE). (L8

450

N = )

Ve will now calculate the potentials ' 5 Q as a sum of deductions
in points t = (2n + 1)i, Since all the poles in the upper semi-space are
single (simple) then we will have

I”=Czp‘:':|n(u)v|n(u). (11.19)

A=t

Q.=C2 45, ) 7, ). v (11.20)

= 2 b (a4 1y2) aren’
- . .
¢i= ?—‘(("!):—)q 1@n + 1)i) (11.22)

. |
' Expressing the values p(i) » Q(,Z,) through tha functions xin(vo) »

etap (vo) we will obtain

P2 en i (.93

_ 3

= (11.24)

Particilarly, at n = 0 it will be

ive,

& i g =—iyge™. (11.25)

© Py =

\ We yd.il' calculate the field corresponding to the zero members of',thjs ‘

-~ preak=down (11,19) and (11,20); i.e;, to the potentials

PO =Cupe™ T () ®) - (11.26)
= -_-l(:u,e‘"-i, (4) Mo (V). (.27
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Ve will then have

s:+11'=i02n:,":,,(u)€.(u)._ (TR

=

Ve have °

§ —iT'=iC 2 B9, (W)E, (), (11.38)
' n=0

. $Pe=0; 1},’!:0’,—’ . (11.28) ‘ . . F;+10;==_/%2("+|)n2»5“(u){” (©). (11.39)
,m:__gv_a,‘("*"—, (11.29) ]

[MairT]

(néo; 1 ) | —iG, -A—V(u+l)b'""uinl(u)—tnl(u). (11.40)

In an analogous manner one can obtain series arranged according .

. The parabolic components of the field are obtained by substituting the to functions ‘ﬁ‘-“n () otay (v). We will write
. w:laluea (11.28) to (11,30) by expressions (9.,16).and (9,17). This field a®=n(p?+ig®), ' =0; [UED]
.. . & __
corresponds to electric potentials with components l;"’—(n +1)(,,"Y_,.,~’) b =0 (11.42)

AP=0; A‘,”=0. (11.31)

and we will obtain
AP A= — O gt (11:32) .
- }—xT'_—iCZH‘,,"'n,.(H) 7, (0) (.43

These ions t an app: h to the aciual field under con- i . n-0

©
. s —iT=—iC Y o5, ()7, ). (11.44)
ditions whare u>> 1, uv 7>"o‘ In the general case it is necessary to . . §' —iT N ,.2..“ n n

. u=v.
take into consideration further membérs oi‘ the saries. i F +‘ g _26(-., oo, e = +

i the el lia; i\mctions s, T, F. G are denvad from .

., The berles for the audliary * . , +7:2(,.—{—_l)a,;,.n...(“)*...(v). (1149
"the series"i‘or P > Q by formulas brought forth in paragraph 8, Vuv e

Ve will write ' '

Fy =i, = o Y DR ) (1146)
a=0 . .

—-(n+l)(P’,.”+w“’) ("—l 2,0 (11.33)

“’_2:(,1 + 1900)s (11.39) Substitution of these expressions in (9,16) and (9.,17) gives the re-.
B'=n(p) — I‘Im) (n_— [ (11.35) . ' ’ ) . B ) R -

‘ : ' c flected field, .
=T (11.36) : . soul Sl
. o
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It now remains to investigate the convergence of the series obtained,
‘This is not a difficult task provided one utilizes the asymptotic ex=

pressions for functions xin and etan described in paragraph 3.

b (W) =4 (1 =)V @ F1)u) (11.47y
s @y=ixHP (L =)V @rFT)u) (11.48)

By utilizing these expressions we will obtain, for the coefficients
of distant members of our series, a‘pproxirna‘ue values
Pl = igme T, (11.49)
= ﬁi_';ﬁe"‘” s, (11.60)
p= — L ettt : (11.51)
et (11.52)

o 4
9 =" x@+N

where, for ‘the sake of brevity, we will write

- w=y@T D (11.83) _

It is evident therefrom that the series (11,12) .and (11,13), as well

as other series arranged according to xin(u)xin(v) functions coincide ab

* conditions

Visyi<ava, 018

and series (11,19) and '(13,20) and other series arranged according to’

eﬁn(u)etan(v) functions coincide at Athe condition
VitVeseWa. . (1Ls5)

N

The boundary of the convergence zone is the surface,detei‘nd.nable by
equation
- R+ r=2a. (11.56)°

" This is the surface of rotation, the cross-section of which in the
plane of symetry is.the parabola with an axis mrpéﬁimhr {',6. the axis
of the pax:'aboloid_ and with .’ohe apex in the point z = O,'r =.a, i.eqy :;t
the intetsection of the focal plane with- the paraholoid.

} Par, 12.'The Field in the Wave Zon
In the case when all the three numbers u,‘ v, Vo are graat‘ in compari-
son to En;e (1) (large in ratio to one) expressions for the' field corresponding
+0 an approximation of geometric opticsl may ‘be obtained, In our case, P
and Q' will be represented in the form of integrals (10,05) arlld. (10.06.).
In the case investigated, it is important in these integrals that part of
the integration cﬁrresponds to finite ‘Values t. But, at finite t we can
utilize the asymptotic expressions (2411) and (2,15) for the functions *
zetal and ze?az. Using these exxé'i:es:siom we 'ri'_.ll cbtain
. == 15, (H;‘ Ly ) (12.01)
S PO=qttre) ' T (1202

where dotted lines designate the inenbers: of ‘the order _1_ . J-W,ith the

» veo ,

very same degree of accuracy we will also have

LG DY, — )= ("v);f
X(l—- 4L(’+i)’v".—’_
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' Substituting these cxpressions in an integral

.
A, (e, —0dt (1204)

g
S 2

we can write it as follous

+ o0

) __(_’_) Ty
W I uv

X{ﬁi—ﬁ']—i—“' +iE4 ) a209)

This integral can be calculated without further disregard with the

aid of ratios

+ Pa—
S St Mg (12.06)
(t+ich g

e
C o —it) it g, B2

5 U=B) et = gy (1207
), g

(12.08)

100 . N
S (L4t -u g BE
5 CL02 =
ch
S .

s . '
As a result, we arrive at the following approximate expression for Q

L ou-T P )
) i b\ oylu—v 4 20)
H-de(ie ) +osri)
' ; ) . ) (12.09)

Q =VCe’(

043R001700010009-9

Ina s@mila.r way one can also calculate the integral P', but here
we can do away with the infegration because in our approximation, accord-
ing to (12,02), p(t) = tq(t) and cox_:sequently Pl == 2Qm, where Q'* has
the value (10,09). Calculating P' by formulas

P=—2L0, C (1210

we will obtdin

pr=Ce’ ""J"%){—,,%lg(l-i-%f—)-l— To

v2 4 uv

+("‘§%‘—u—)’[(u—u)(w—3\v§)—2uz +6uauu]} . (12.11)

[ T B |
The auxiliary functions 5 , T , Fp, G, are derived from (12,09) and

(12,11) by differentiation, We will have

o t52) [0y 0§~ ) (of —2u0)
§'=Ce @ruwp T (ot uol +

803 uv (uv'— 207) } ,

Souvlw = ol 1 12.12

+ o Faon ( )
: (12.13) -

A} (—e) | -divluo }
Frw @t wp | whtuor )
- ) (12.14)

. o, ) ) » N (
The difference F]'. - iGl; will be of a much higher order of smallness than

F;. B namely,"

’ 4T 3 -
F;—ia;z—&'(f ™) s
. @ tuop”

s
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_: The ‘substitution of the values of awxiliary functions found in from the axis, But these expressions represent holamorphic functions
formulas (9.16) and (9,17) offers parabolic components of the reflected of the coordinates x, ¥y, z also in the vicinity of the axis, They can,
wave field, By combifing these components with the expressions (9.0L4) ) { therefore, be applied in all these cases vhere the corrective members
and (9.05) for the prinary field we will obtain the overall field, Since ‘ are small in comparison with the min ones, including also the axis of the

' th; V!.‘ormulas for the parabolic components-of the field have a complex paraboloid, v

form we will not list them but m.ll check only the realization of the Par. 13 Rectangular Components of the Reflected Wave Field

boundary conditions. It is evidemt from condition Epgy = 03 fy = 0 that P In order to calculate the rectangular components of the field it
on the surface of the paraboloid v = v it should be ’ ; i i mosb convenient to use formilas (7.21) and (7.22) for the electric
(12.16) and magnetic potentials, We will write first the accurate formulas and
(217 i then take up the approximation discussed in the previous paragraph,
) According to (7.21) rectangular components of electric potentials
where 1° and F pertain to the primary field (formulas (9.20) to (9.23)e b are equal

Here we already took advantage of the fact that Gl 0 and T = 0, When
: . (13.01)
V= Vo e AV b - ivA= i . (13.02)

utve

jutre

7

2 | ;
(u-&l—u\,’*_ (u+'%)_‘)‘ (12.18) . = On the other hand, according to (7.22) the magnetic potentials are equal

v ‘ B,=0; B,=S, B=-hkyF; (13.03)
Comparin’g (12,18) with the difference of expressions (9,21) and (9,22) { . divB = ikB, = k33, (13.04)

rmr 1% and F we vr,\ll become conv:.nced +that the members of the order

X It is therefore possible to xepresent the field in two forms 1;
. 1/(\1 Vo) and 1/(u + v, ) in the right and left parts of (12,16) coincide, orms, name. Y,
: ' ;o auer | PR T X
In this approxlmatlon both’ parts of- (12,17) also coincide, . = kT = -
d (keFy)

| : - . 0k ) S
S conclusmn we wish to point out that the expressions derived for : E . k=Tt = 1[&’_0 ) (13.05) .

N Gl were obtained in the assumptlon that the values u, v are } ] E E,= d(’:‘m) +li’xG,=:g%

___~a(kxa)__ 3 (k3Gy)
4, ! L= ot

=

_c_néeqﬁently'-, ﬂey are substantiated only for greater distances

H, _1—+t""'"’" — 129 s, | (13.08)
~H‘=_[—5y—=_1‘2%0’)+1kzypl'

59
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Turning to ‘the approximate formulas for the reflected wave we will

have, T' =0, Fi - 16, The reflected wave field will, therefore, corres=
N : o
pond approximately to the vector-potential with the single component A o
different from zero which, according to (13,01) and (12,1L), is equal
' pdkatD) a 4ia¥ 4ia%z
A =t "f( R ",k(.ﬂ+rr)s+ B@E )"
(13.07)

The components'of the field, perpendicular to the axis of the para-

boloid, can be represented in the form

i

. k_0(r*F; %k, OF;
B= Hy= 20 cos 29-5r G, (1309)

g : k  OF;
Ey=—H'x=sm ?tg-—z—r-;,% , (13.09)

ﬁﬁ(f’F)__ 1k (a+7) Ll
o =0 a’{(aﬂ+r7)l+

(18.10)

sic? [ Qat —r?) taz @ —a)]
+ ICEON } :

B OFy __ poiktata | art, . 4lart(2rt—
20 (@7 - [ACGECH

" The components, paraliel to the m&s, can be calcylated with the aid of

approximate, éxpressions

i 24ad .
SI=CEM(G+I)“W’::"1T; ) ’ (13.12)

In consequence: we obtain

glreosy ., g =0. 13.13)
=—Ce"‘“*"'ﬁ:ﬁ%{vﬁz 0 (. )

For,.the purpose of demonstration we will write plain éxpress‘ions
for the reflected wave field and we shall confine ourselves to major

(primiv) terms and express everything through rectangular coordinates

14y = x) dkain), o
T

. 2 Ihat

E=—Ca +l:'y+yt)1 et “, (13.14)

. Biadx ik (at1) ‘
E,=—Cigraty® '

YR
H =t (a2 4 )? PUIEEN
'y 5 .

R

. 2axy Sikiatn, Y
H,=C Gyoryr e [

(13:15)
H,=0.

The written out expressions strictly satisi“y equations d‘iv} EI = 03
aiv H' = Qand approximately satisfy ‘the ram;mng Maxweli equations
(together with the primary field) and the l?oundary conditions,
Iet .us examine the overall field in the wave zone along the axis of the
paraboloid, Component Ey will be differer‘it from zero which is equal
Bym— e @R St (1816 - o

where the first member corresponds to the straight line and the second
member to. the reflected .wai'?. since z = R the amplitudes

at a condition

- s

)ea‘—_—-vo—_.—(Zmﬁ—'l)n (m—nenoe) (1~3.'1a)5(m ip an' integral)

61
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" and they will be subtracted when

ka=v,==2m. (13.19)

The correlation (13.19) indicates that the distance between the focus

and, apex .—;- i equal to the odd (uneven) multiple of one quarter of

the waves
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Rediation Characteristice of Spherical Surface Antennas

by
M, G, Belkina and L. A, Veynshteyn

Introduc‘l:;ion:

We come in contact with surface antennas in all those cages where
the rediation (emission) or reception of radio waves takes place in the
neighborkiood of massive conductive bc;dies.' And so, for exemple, an
ord:lna:r} oscillator (dipole) mounted on & metal body together with that

‘body forms & complex surface entenna the radiation characteristics of

| .
which can be entirely different from the well-lnown radiation charac~

teristics of an oscillator in free space.
In regarding slot antennas the radiating slot is possible only
in the presence of & conductive surface (walls of waveguide or cavity
resonator) in-which this slot is cut, Consequently, any slot antenna is
at the same time also a surface antenna nnd the form of the surface may
exert a strong effact on the radiation characteristic. X
Tha,problem concsrning 4he radia’cion characteristios of surface

nntannas, particularly slot antennas, was theoretically investigated

only in a very low degree, The calculation of radiation chnracteristit:sv s

of surface entennas is bnsed on the solution of dift‘raction problemu
becauss the radiation field of a surface antenna is being formed ns

result of diffraction of electromagnetic waves on'a conductive surfacs
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This report presents & study of the radiation characteristics of

. *gpherical gurface .antennas, Using the classic theéory of electromagnetic
wave-diffraction on & sphere as & bagis and utilizing the general reci-
procity theorem, we offer formulas for the radiation characteristics of

" electric or magnetic éipoles situated near a sphere or on the sphere
ifneit. So in doing we molude algo the case of & gpherical slotv
anteriria because the magnetic dipole on the sphere is electrodynamically
equivalenf to the slot out in the sphere. The caloulations, according

" %o these formules, are carried out whenever possible, In other instances
these expressions appear to be the basic point for the derivetion of ap-
ppoﬂm’u formulas by which the radiation chaz‘ac‘bsristica“m caloulated,

During the analyeis of a spherical surface antenna we have the

prortn_nity of explaining, from the quentitative viewpoint, what effect
the surface curvature has on the radiation characteristic and we encounter
"8 'uz‘ga'af of phenomena. which are common for the entire class of purface

antennas,

Paragggg 1 Diffraction:of a Plane V}lave on_a Sphere
During the study of el tic wave diffraction on a sphere :

:‘it ia custom.ry to introduce the so-callad Debya u &nd v potentials which
b give the cumponents of the elsc‘bric and magnetic fields in &’ sphericnl

‘of eoordi.ua‘bas in accordance with formiles (see, for example,

&
(7 )(f“)v
1
Ey=— g " “)‘l"ksm\)T'
Ev=rs1nh Fa)—y(’“)—‘k:ﬁ'
H, =(f—’, + k’)(rv).
Hym — it sy et ()
- slnD Dv+r aras oh

. [
H,= :k EF + ,Tn Ty (ro)

vhere k = g ﬂ is the wave number in a vacuim (time depen~

dance was teken as e-i omega. 1“). The u and v functions ahuuld serve as

solutions for the wave equation
Au - hu=0; bo-k2=0. @

rhe terns (1) snd (2) are correct ‘for the vacwum, We cen confins
o\xraglvea to the study of the fields in vacuum when the diffraction
ocaurs on the sphere which. can be considered as ideally conductive, In .
this c%sq (which we will discuss exn;usiveiy) {he presence of & s;;here

of the 'rad:hié 8 ‘is comsidered as boundary conditions:'

E,=E, =H, =0 npu r=_‘l(1‘ - (3)

We will discuss the diffraction of & plane elactromay:etio ave

-falli:.\g ona sphere in the direction oi' the negativa ‘axis z '. hav‘lng

a field

. (‘_).‘ .

Declassified i - iti;
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For &uch a case it is conventent to'utilize the P and Q potentials

introduced by V, A, Fok (3) paragraph (6) which are comnected with the
u and v potentials by ratios

u=cb§v%, U=—Si|1'f%—qb<. (5)

18 PO and Q° de .

by the formila’

! 2"_’(’;‘ § (= ity (k) PyfeosO), (8)

give us the field of the incident wave (4) by virtue of formula

e et 2(21: +1)(— i)', (kr) P, (cos8),

a=y

The overall diffraction field of an ideally conductive sphere has
potentials

P=

2l 4, (ka) :
—w—rnz_}l awny O [‘?n(k’)'f é: ) t,;('?f)]”,- (cos 8)

Q=
¥, (ka)
:TE e ”"["ﬂ (kn)—z (k:>° (’”)]P n(cos).

U]
wherefrom we nbtiﬁ omponsnt.l

E,=cosg V1), I'l,—_.;—sinpl;(b. 3 I
E.=cos@f’"1(0.r). Hy=—singV"(®,r), (8)
E,=slnqa\7‘“(», 1, Hy=-—cosgV?(®,r), | STAT

oved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9

!
R Vm(o_,)—— -ik m,,'* Fsin® or

When determining the functions (9) it is necessary to differen-
tiate the series (7) by the variable theta in segments, The deriva-
tives of the Legendre polynomisls 'Pn according to the angle theta can
be best calculated by formulas:

dpP, (C:S 0) - P“’(cos 8),

L‘%ﬂ  cigh PM(cos8) —n (v + P, (cosm

vhere P @ is the aasociated Iegendre function tabulatea togethar with
P (see [L:] )3 for n = 11, 12...00 20 ve calculated these functions by
recumnt formulas), The i\mctiens psin and zeta.n are ths apborical

‘Bessel functions determined by neans Pf fomulsa

G W=y FH (3.
3
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These functicns are conveniently caloulated with the aid of tebles[5] s

- Their derivatives are calculated by romlu
N
W,.(x) =4y ()= ¥ ()
"On the. g\}rfaé;'c of the sph;azjo, 1, e., vhen T = a the funotims (9)
acquire the £611owing, valuess

V. a)—v"’w a)—V"'(o ay=0, . - (1a)

' dP,(cos®)
voa=5Yentnigg—a (19

1 dPy(cash)

. .
viea = 'Em‘ U e

_— AL -
+2n(:| gy - T ()

Sa (‘) i

\ ; P, (cos )
Ve, a)= ] E Mt el e+

n(n Ex I) Ta (:j

dl‘,,(msb) } ()

iy \

(l)

ved for Release 2013/02/14

043R00170001000

We wish to point out that thanks to the relations

1 4Py n(nt))
l‘"‘ db‘f =lm o5 = 2

.1 4Py “a(+ D) "
w —limgs T=—r
between the functions (9) at theta = O and thete = pi there. are

relations _

Wwen=—v20,n VIo.n= V0,

VO )=V (), VO, )= — VE (E ). (18)

Paragraph 2 Radistion Characteristios of a Sphorical Autenna

Formilas (9), (7) and (11) of the preceding paragraph make it
possible to obtain rated formulas for the radiation characteristics of
electric or magnetic elementary dipoles oriented near the surface of &
conductive sphere or on the, very surface of the sphere and togatber with
that sphere forming a surfacé antenna, . For thie purpose i’c is necessary
to utﬂ;l.ze +the reciprocity theorem for elementary dipoles, We will
formulate, for axampls, an expression for the radiation f1eld of & rndial
electric dipole. Ths p‘l.ane vave (4) pear the aphem cun be cmsidered a8
a part of the spherical wave radiated by the dipole situated on. ntl.: l »
at point B at & gmatar (4n comparison 'with the radins of the sphere snd
length of»uave) diatance from the csnter or the apnere and having a mment
Py direeted along axis x (see Fig, 4, pags 62)e Aaaumin at :Ln poi.nt A

with ccordﬂ.natea r, psi -0y theta sxhibits a radial uleotric dipola ud.th ST A
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Theaa mnctions are c(mvaniant]y cnluuhted ‘with the aid of tables [5]
- Their derivatives are culculated by formulas
: )=y ()= 4 (0
"On the mfné;_ of the sphere, 1. o,, when r = a the functions (9)
. acquire the ft-:]JMx;g values:

V@, ay=v"e, a)_v"'(o a‘)—-O o (lla)
Vo= Yt g L (19
oyt = %{:;h)]%,f;—.u ey T
+2,.:.'.',' - ,A‘(,) d,lpd(;fm} (1m)
Pl d*p, (cosd)

Vo, a) = ___'_ {,‘ Ef T —i) ,’(—)‘ —m T

) ot 1 Lo dP, (LDSD)}. ()
+mt2n(n+l) - W0

: In this cass tha lattar al}im deuigpntu tha mquantly en~-
Acmmtorod dimensionless pammaur ’

emha=%2 )
squal 0 the mmber of vaves vhich pﬂo up’ on tho circ\mfcnnca
oirole of the sphere, Ind de. inﬁ,e enla the' uriu (:IJ.)
he disbri tio of the uurfnne aha:rgo and curmt o’ -an Menlly con-
2 ydiatpd by. the. plane wave,

CIA-RDP81-01043R001700010009-9

We wish to pointb out that thanks to the relations

1 4Py n(ntl)
=lmgrm=""12

1 4Py n(ndl) ,,
snd @b 2 =N

——hm
between the functions (9) at theta = O and theta = pi there are

relations

TN =—P20, VI O.N= VIO,

V=T, V==V En (13)

Peragraph 2 Redation Chevacteristics of a Spherical Antenna

Formilas (9), (7) and (11) of the preceding paragraph make it
possible to obtain rated formulas for the radiation characteristics of
electric or magnetic elemeq‘tnry dipoles oriented near the surface of a
cnnductiv; sphere or on the very aurfaqs of the sphere and together with
that sphe'ﬁ forming a surface anterina, For this purpose it is necessary
to utilize the reciprocity theorem for elementary dipoles, We will
formulate, ft;r example, an expression for the radiation field of a radial
electric dipole, The plane ‘vave (4) near the sphere can be considered as
a part of the spherical vave radiated by the dipole sif!‘lnhd’ on axis l
at ;.Jéint B at a greater (in compa.ris.on '\ﬁ.th the radius of the sphere and
length of wave) distnnce‘(' from the center of the aphsré and. having:a_moment .

VP! directed along axis x (see Fig. A, page 62). Aamming that- 1n point A

with coordinates ry psi = 0, theta exhibits a radial alaotrie dipole vith
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Figure A
such a moment Pz P that its primary field has a component in point B

Ej==sind.

_ Since fﬂe plane wave (4) has a component in point A

-E? —e~W et ding,

the reciprocity theorem gives‘for the dipole moments at points A and BJ
P, =e—u‘rr'-s upr. |
As result of diffraction on the sphere the field of the plane
vave (4), in point A according to'(8), has & component *

E=v(0.0.

According to the reciprocity theorem for overall fields the radial
dipole, situated in point A, should produce a field in point B

E‘=elkr:n: 'y, ),

where theta is the angle between the radii~vectors leading from the
center of the sphere touardtpoints A and B, If the axis of the spheri-
cal system of coordinates should be drawn through point A, in which
the radial electric dipole is situated with the moment Py then its
primary field in the wave zone is

R 142
E,=H, =— kp-g=sinD, (142)

where Ris the distance from the cbservation point to point A and the
angle theta is read from the direction OA, As result of diffraction on
the sphere the overall field has thq form of

olkR

Ey=H,=—kp “p=W(d,1), (146)

where "the Weakening Factor" W (theta, r) is commected with the funo-
tion V (thets, ) [ ses formilas (9) and(7)] by the ratio

WO, r)=c* "y (d,r). (14n)
If the moment p of the electric dipole, oriented in point 4, ETN

perpendicular to the radius-vector OA then we guide axis x (beginning
of the reading of angles psi) parallel to p (so that p x Pe)e Then in

. plane psi ~ O, where the primary wave field of this dipole is given by
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AR
Ey=H,=kp " cos?d,

the overall field of the surface antenna will be

kR -
Ey=H,=kp g w@,r),

wihe, ,)=e"""" v, . (158)

In the plane where psi is _pi the primary field of this dipole has the
2

form of

Eom—Hy=—ktp S ;
1] ’ R
and the overall field

(AR -
E,=—Hy=— ktp S~ W0, 1), (166)

i/‘”'(ﬂ. r)=glhreond Ve ®,r). v (lSn).

We will now investigate a case where, in poini.A, an elgmentary
magnetic dipole is situated with a moment m, If the dipole is directed
radially so thét, in the absence of a sphere, its radiation field is

. b R
Hy= - E'=-—k .~ sin®, (17a)

STAT

Declassified in Part - Sanitized Copy Approved for Release 2013/02/14

then the field of the surface antenna has'the form of

Hym = — im S W (0,1), are)

whereby

WO, r)=e™ 3V 8,0). (178)

Howeva‘r, if the moment of the magnetic dipole is perpendicular .
to the ;‘hdius-vsctor 0A, then we, as before, select the d;mctiqn of
the axis x as coinciding with the moment m = my and in t‘he p'lan; psi =
0 the primary field in the wave zone containing the dipole is presented
by fonﬁﬂn

Lk
-

r cos 0, (18a)

and the diffraction fleld of the spherical antenna equals

= L= kom0, ), (i86)

“hm(“'r)w ik e \"“(D, . - ) " '(’J’Hl’l)‘:" Co e
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and the radistion field of the spherical entenna has the form of

. AR ey y
H =E,=—km S W), (196)

W, r):___l‘u,}mh‘,r.’l(a.‘r)_v ©(198)

‘The £1eld of the magnetic dipole sboye the sphere for any arbi=.
trary value of the angle psi is given by fomn'lu:

—iem g WO, yeost |
; (20)

PR .
Lk Sk.. W@, r)sing,

and in a sinilar menner slso for the ;alectria dipole, Formulas (20)
are derived directly from formiles (8). ) ‘

Nexf, we will calculate the radiation characteristics of elementery
dipoles situated on the em.“fgce of a sphere, i, €., at r = 8, For the

sake of brevity we will write:

W= W ="V (), .
WO @)=W"®,q =c Yy, (@D
W By W (b ) =V (0, ), | ‘

vhere the parameter alpha is determined by formula (12).

Tt should be pentioned that the finctions W2 (theta) JERN

(theta) also offer the radiation.ch ristic of an el

bell type) slot (see Fig, B) cut in-the s‘;)‘l:éi‘e'beca;xse s\xch a niot u‘ X
X & . ¢ K

1s known, 18 equivalent to the elementary m@ét’ic‘ aipole Bl
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sphere, The function W (thota) gives the radiation characteristic of an
anmilar symmetrical slot (see Fig, C), provided its radius'is small in
comparison with the wave length and the redius of the sphere; suck a

imagnetic ring" is equivelent to an elementary radial electric dipole,

Para, h Threshold Case, Graphg of Radiation Characteristic
The calculation of complex functiuns (21) 48 of greatest interest
in 'th; vtheory of spherical surface antennas which is represented in the
form of geries (11b, c, d).
Ir

a<l, (22)

then these aeﬁes are approximately reduced to their primary terms
and ve obtain

W (0)=3sind, l
=3
wh (@)= Fcos 0,

wog=2. ]

) Thus, in’ a specific cage ‘of infinitely long waves, the affect, of the
sphere on the rmﬂ ation characteriatic of an elementary electric or mag-

' netic dipcle N which is situated on the surface of a sphere, is three

times equiva.'l ant tn the jncreuse in the moment for the radial electric

. dipole and one und ons—half ti.mes for the magnatic dipole (elementary

slot). I‘rom the viewpoint of electro-and magnetostaties this fnrease
: STAT

is ted with the appesrance (dus to the presence of & sphere) of

static "images" of the primary dipole.
In the case whén

a> |

we actually deal with geometric optics.
In the proximity of geometric optics and irradiated zone, i, e,
at 0 < thota & —Eh— v have formilas

W (9) =2cos b,

W (h)=2sind, \
w (0)=2,

and in the shaded zone, at _g_; < beta < PL

WO =w"0)= w*(0)=0. (256)
i )
The equatorial plane theta = _ﬂ, consequently, appears to be ‘the guo-
metric’ boundary of light and’ shade above which the cphere donblu tl:n
.dipole ts dus to the -of the "optical” image of tha pr:hnaryi

source, Below it the sphere cumplotely shades the primnv field of dipole
radiation, The formation of static and optic images phee ncaxﬂing
to different laws; therefore, the coefficlents in fcrmlu (23) and (25:)

- are also different,
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Formulas (25) do not take into consideration the diffraction
vhich appears, first of all, in the absence of‘ a distinet boundary
between the muminated an«i shaded zones, 1, €., in the presence of a
semi~shaded zone, It is impossible to utilize the series (11) for the
derivation of a difﬁ'action chart under condition (21.), because, in
this case, the series converge very slowly. However, the approximation
formulas for nmctiona (21) cen be derived by applying the common dif-

fraction theory of a plane wave on convex conductive bodies, developed

by V. A, Fok[é, 'IJ . These formules are

W () =sin0G (3),
W) =5 F ),
W () =G (&),

where M and xi are the dimensionless parameters

1

Mz(%)' T)J. = —Mcosd,

and F(xi) and G(x1) are the functions determinable by means of integrals

ved for Release 2013/02/14 : CIA-RDP81-01043R001700010009:

" where the=contour |~ (G) in ‘the plane of the complex variable t 48

represented in Fig, D, end v (t) 1s the complex Bure functicn (see
[6} or [7] )e The formulas (26) give a contimuous chatige from
11ght to shadow and in the illuminated zone at greater negative xi
they convert into formulas (25a)3 and in the shade, at greaur ‘positive
values xi thoy are practically uro, 1, e., they convert into formuln
(25b),- Since the absolute values of functions F(xi), and G(x1) de~
crease monotonously during an increase in the parameter ,’i' the change
4n the radiation characteristics during the increase of the parameter
alpha = ka from zero to infinity may be assumed as taking place accord=-
ing to formulas (26) in the following manner: the radiation in‘th. lower
semi-space theta < _!L weakens monotonously, and in the upper semi-
space theta < i t.hn characteristics pass momotonously over from
funotions (23) to t\mctiona (25a); the semi-shaded sone hav!.ng an angu-
lar width of the order _ﬁ_ , decreases,

Thorfn.t is that the change in radiation chax'mrhticl is more
complex as is indicated by the direct calmﬂation -cconding to ﬂm -aif-.
fraction. aoriu parngraph 1, ;

In the duw:l.ngs 1 to 5 (see at the end" of the report) the Tesults

- lating the sunotons WL (thota) and W@ ( (theta) are

very seame values of the parameter alpha. The calculati
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) . ’ ’ W (theta) ~ the amplitude characteristic, the phase arc W (theta) -
we took twelve and.at alpha = 10 we took twenty qﬁmbgrl of the series [ (theta) ] p. » = v

the phase characteristic of the given of gr g y

and, ‘uln a result,-obtaining.an error of not more then two units of the
ourth ( ) after the ! csrta.inly, is the amplitude characteristic often called aimp‘ly, the ra-
fourth sign (power) after the comma,
diation charaeteriatic.

The graphs mentioned ahove show the characteristic features of the
amplitude Tadiation characteristics:
1) the ap;paaran‘co of new maximums the total number of which

incr;Eaea with the increase in alpha;

2) the ‘oscillations comected with it which are partioularly
intensive in the zone of the shadow and where, due to these oscillations,
the radiation characteristics acquire a multilobe form; and

3) purticularly strong oscillations in the vicinity of the
pole theta = pi, where the amplitude characteristic aaaumn roht:lvnly

greater values,

- As to the phase characteristic, it experiences rapid chaqgss near
the minimums of the amplitude characteristic, '
We shall analyze more thoroughly the individual series 'of‘ érnphu.‘
The radiat:lon chara.cterist:lc v (\:heta) of a radial electric dipole at
a.lpha 1 is different from the charac‘aeristic at nlpha ~0bya smaJ.'l.

Figure D
diuplacement of the maximm into“the’ zene of’ the ahade. Hhen nlphn is

. _The grap!w ehow ‘the absolute valuea and phases (in degreeg) of the

V . ",
ocmplex funotions W (theta), W (1) (theta) and “(2) (thete) in relaticn 2 this maximum was already broken'down into “two protuberanees" During

to tha angle ; thetn (0° < theta < 180“) st a given value of the

par: ter alpha,
. For example, the complex ﬁg:qtion W (theta) should, of. course, be

further increase: In the paramster alpha nev maxima and, mini.mn nppe
and the number of oscillations increasss monotonously occnpying ap xi-
mately an interva} 60° < theta < 1so°

called the cqmpi_qx radiation characteristic and its absolute value
R : STAT
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The complex characteristic N(l) (theta) of the magnetic dipole in

th; meridional vp]:ane conta‘:!.ning the dipole has, at the very same values

of the parameter alpha, & mch simpler form, _At alpha = 0 it consists

of two l&gsr 1oi;es of uniform size - f;he upper and lower - separated by
* the zero value of the amplitu’de characteristic at theta = 90°, With the
increase in the alphe paramoter ‘the rear (“shnded") lobe, always remaining
strictly isolated from the upper one gradually narrows and weakens, With
this weak oscillaﬁnn begin to appear, noticesble especially in the inter-
mediate range of angles between the upper and lower lobes. Because of the
pra‘senca of these oscillations values alpha > 5 for the lower lobe should,
in essence, be considered as the meximum of the oscillations (having a
maximum at theta -180°) in the amplitude characteristic,

The above mentioned criteria are possessed by the function H( 2)
(fbl;eta) in the most distincy form - the complex radiation characteristic
of the magnetic dipole are in the meridian plane perpendicular to the
dipole, Here the osqiilntions are quite noticeable over the entire
diagram. The oscillatory nature of ‘this ‘ﬂ;nction leads to the ract.that,

. :Ln order to.plot.a graph it is necessary, in meny cases, to calculate
__this i\mction according to the argumont theta by 2°, The function w(z)
r(thets) at alpha is 0, is constant and equal to _l. for all valuea of
!‘,the ungle theta. During the increase in alpha it acquirea a wave-like
and, at a change in thata from O to 180°%, the oscillation amplitude,

V:Ln general, increases.

It can be concluded: the value of the peremeter alpha - 10 is

st111 inoufficlently high in order to allow a clear formlatian of the

il'l.umj..nated and "shaded" zones with the 't transition bet
them, In>ot}‘xer words, when alpha > 10 the radiation characteristics
are not even qualitetively trensmitted by the approximation formlas
(26) and the direct utilization of the diffraction series is already
impossible, The presence of oscillaticns from the physicel viewpoint
remains incomprehensible,

m tion with the ts made above we have two problems

closely connected with each other,
1) To explain the origin and physical sense of the oscillations
in the radiation characteristics of a spherical surface antenna and;
2) To derive such approximation fornmlnjas for the radiation
characteristics which would give satisfactory results at alpha) 10.
The- solution to these problems will be given below, in paragraphs
4 and 5, .
Paragra) Definition of the Theory of Diffrnction on a S ere
at Groater Values of the Parmneter Alpha
The potentials P and Q Eformula ('7)] of the electromagnetie field

of a plnna wave being diffracted on a sphere, can be written as folloua.

D) Py feosi);

P (cos ).

T
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The summation here is carried out in accoidance with the mu values

obtained

—__.T) L *) ]
2

@
AR ]
2

and the value alpha is determined by the ratio. (12).

It can easily be shown that the potentials

v

=i\ 77— — PP _1(—cos ¥ dv,
& (vl - —4—) cos (rv) 2
v

O=i{— " we)P_ i(—cosd)dy,
; 1o

(32)
b '(»1 — %) cos () '

where the contour Cl'compriaes the right-half of the material axis .
(see Fig, E) and the potentials give fields (8) - (9) such as the

potentials (29). The fact is that P and § aiffer from P and Q,, re- -

spectively, by superflucus items - deductions in the point mu = 1,

but the ‘fields of thése items, as can easily be proven, are cbtained
equai to zero,

STAT

Taking advantage of the fact that P _ EY Phi (uu) and Pei (nu)
2

are the even functions of nu, we convert (see, for exanple, EB] Fige §8)
the course Gl into C which is parallel to the material axis and sbove it ‘

(ses Figi E), Using the ratio

3 _L\x .
”,P‘_.( ~cusll)=; ')o:+e‘(' 2)p__%(cosu)

(see [9_] par, 2; expression G¥ = was explained in formila (2.12) of
this book) we separate P and § into componenfs

PPt P Q=Q+Q" ’ 33)

" BT
- ' @4
~B ()P _ 1(cosB)dy,

and the components Q' and Q" are exp " by such rals in which
Phi (nu) ‘is substituted by Psi (nu).. ’ :
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Figure E

Further transformations of integrals are based on the following
characteristics of subintegral functions.
1) G*n“ is a holomorphic function at Re mu > 0, having the
poles on the negative pert of the material axis;

2) Zetam]_ 1 and zeta ', a are integral fumctions mu,
2

not having zeros in the fourth quedrant;

3) Pl and pei! , ere integral functions of nu;
2 2

and )
4) Consequently, the functions Phi (m) end Psi (mu) are
holol’norph:lc 4n the fourth quaArmt and meromorphic in the first,
',v{hen studying the integrals P' ,em‘d Q' the contour C cen be sub-
stituted with contour Co which intersects the mater‘ials' (tea.l) axis inv R
the point ma, from top to bottom (see Fig. E). On this contour the basic
part of integration appears to be the vieinity of tixe point

m, - olpha ) STAT

ved for Release 2013/02/14 : Cl,

DP81-01043R001700010009-9

where, at cbnditioli

5 a>1

@

5

one can apply the asymptotic expressions.(compare['aj p&r} 5)

¢ _aC)=—iVRm,
¢ @=iggelo
C‘;(p)=—iVle('nt¥my).

1 w; (mt — my),

b1 )=V Mmv' (mt —my),
z

= v (mt—
;_(p)-_ VM:TU(”” my),

-uhérg the nondimensional values m, M and y m"a~uu follows

Declassified in Part - Sanitized Copy Approved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9
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Vand the variable t is connected with the veriable mu by the relation =
¢ and the function G’mx is applied, the asymptotic representation (see
ve=a ML (40) - [9] formia (2.09))

The functions Phi (nu) and Psi (m) can, consequently, be written | . o '/_; ‘/'.?

as follows

¥ MmX

\
|
X {u (mt — my)— %% wy (mt —"‘J’)] . $ @

"V R Vit o)

X {v(ml -—my)— )) w, (mt —my) ] . l ._’ 2ot), o

If ve are interested in the points oriented at such distences from
the surface of the sphere r = 8, which are small in comparison with the
. Dt —y)}vdt‘.
radius of the sphere then, in fornulas (41) it may be written as 1 () ! .
S (44)
walt)

az1 o el mo--Egaa—npa |

In the case of surface. antennas the primary rediators (emitters)
. ‘ure usuelly situated near the surface and the latter condition can be |
considered as fulfilled,

If it is algo taken into account.that
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The “functdons V, end vz, determinable by integrals "(44), are
partiel cases (exceptional cages) of the universal function Ty
(xd; ¥ q) introduced by V. A, Fok &se [-GJformula (4.22ﬂ, mmely

’ ViG= ViGn oy Vi N=V1Gpoee)  (16)

When xi > O the functions ‘v'l and V2 can be represented in form

of series by deductiom

o Ly
e il =Y

Vi Gy =i »/'ﬂz:“ I TNAL
A

% "
vy It w=- i2 ‘/‘__'E“l:lr

e

vhere t°‘ are the roots of the equation w(t) = 0, and t', are the roots
" of the equation w'(t) = O (see- r 9] pare 7).
‘Under condition (35) theae formilas glve potentials eand fields in

tho ‘zane’ of semi-shade and thsse nhould be supplemented in such & nanner as
to obtain expreuions for fielda in any given point aeparated from the
surface uf‘ the sphere by a distance which is emall fn comparison to the
‘radius of the sphere, ’

‘ In order to investigate the f1e1d 1n a deep shadow it is most con-
venient-to begin with the integrals (32), where the contour’ Cy vas ub-
stituted with contour ¢ (running in opposite direction). The poles of’

. the submtegral ﬁmctiuns Phi (mu) and Psi (m) ave zeros of functions
STAT

RO S

et T SR AR
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zeta - 1/2 (alpha) and zetay, _ 1/2 (alpha) which we designate.by

. nu and nu , respectively. These zeros can be calculated'by formlas

Ve=ad My W=at ML, “8)
]
provided- (compare [9] , formila (5.18) b g and t°s satisfy the condition

(19)

In the vicinity of the poles satisfying this inequality, the functions
Phi (pu) and Psi (m) can be calculated by formulas (k1), Since one can

apply the asymptotic formula for the Legendre functions near such poles
)= B
P 1(—cost)=P,_ 1 (cos (= —oy=} stz — 0.
(50)

which is suitable all the way wp to theta = pi then, at an additional

condition,

AR 61

4 A
we obtain expressions in the form of deduction series for P and Q

R e (ti—3 |
Sl ('_“» TGP

= !\. N .\
N Gt ¢
MR E

(52)
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- and sustain these functions beyond the sign of summation, after whicﬂ '
At a condition ooy i ] )

: T the expressions (52) for $ and @ acquire the form of
a(z—9>1 (53) = 3

- . — =T 7
: =g2yFe M ?
the Bessel function can be substituted by ite own asymptotic expression P = \
X Jo(v'(-—u))e : V»(M?- Y

o (x—0)5= m {en(o-—n)+1§+ e~:u(a_,),.g_:.}, i . o= oV ’;.Mi
G4 ‘ Xy O (== ) S, (M z, J)
after which each of the series (52) will be brought to a linear combina=-
tion of series of the type (L7), i.e., to functions V) and Vp, mamely, | During the derivation of formilas (52) it was assumed that conditions

(49) and (51) are fulfilled for all essential (material) members of the

o (0= = 3n
R G
{ Vit y)—ie ViG oY), ] series obtained, These conditions actually take place because in the

o—
——a{eh ( )v2(5 y)—ie ( )Va G o), . series obtained several of the first members (for which Its I ~s1)

(55) . are usually essential, and the number M is high. Only on the boundary with
the illuminated zone do the series for functions Vl(xi,Y) and Vz(xi,y) be=
gin shgy:ing a poor convergence. But, in this case, it becomes necessary
b= (7). ; . . . . A

2 to utilize the integral representations (lly), ‘and then formulas (43) again

_However, if we fulfill the condition . ’ . . . Jead us _to the expressions (55)

. M(i‘: —y<l, The—basic‘ greater parameters’ alpha and M of our diffrrac‘:tion_v problem

are cunnected by the relation (38); conseu\iently, the cond vtiops (53) and

then we can write ;
’ (57) do- not contradict each other so that formias’ (55) and‘(59) have a

common zone of applicab_lllty. Thus i‘ormulas (3) and (59) in thau‘ colt |

LI (= —8) =y (v (r—B)):
D(Y;( . (v' (“‘ O £ . bination envelope the entire shaded zone.
o — 0) = Jy (1 (= — ) : B ‘
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The physical sense of formulas (52) to (59) consists in the facts

that in the zone of the shade the propagation (with att tion) of complex
waves take place along the meridians in a direction running from the geo-

metric boundary of the shade (See Fig. F, p. 80)
rsind=a, = (60)

to the axis

TV

DP81-01043R001700010009-9

'l'he,s;e>a/re the first components of formulas (55) coinci‘ding. vith Pl and

Q' according to l:orgnula (13). The complex, waves on the axis (61) be-

come focused and in order to calculate the po‘tentials and fields near

the ‘axis theta = pi and on the axis itself, it is necessary to apply
formulass (59). After focusing, the waves dive’rge again propagating )
(with attenvation) along the meridians toward the boundary of shade - (60).
The waves propagating in this direction correspond to the second componeénts
in fornulas (55).

Thus, the break down of potentials, according to formula (33), corre-
sponds to the separation (formation) of a field of direc“li waves which arrived
at _’ché given point of the shaded zone from its geonmetric boundary by the
shortest way over the meridian, This field is determined by components
P' and Q‘. The components P" and Q“ offer a i‘ie]x-i of waves which passed
through the polar axis (61), i.e., passed at a given point over the very
same meridian but from the opposite dirrection; since these waves have
covere’@ a much longer routé, they normally appear weak in comparison.with
the direct waves, Only in the vicinity-of axis (61), ice., .atv theta = pi,

do we have xi = xiy =M g—l— , and both ‘wave.s are of one and the same order,

Near the geometric boundary of shade, at thetax=+2:; the field of:

direct.waves is considerably stronger than the field of."pola;r“ .waves,

- . n n AR N . .
This justifies the disregarding of P and'Q type components “the- theory

of diffraction of radio waves around the sy\rfac_e of _t‘he,l earff;;v:)}ére the
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parameter dlpha acquireé unusually hi_gh values and the investigation is,

. t)‘.‘ér‘evi;or‘e ,. il:vlmitad. usuglly ‘r;y the zone of the semi~-shade, In our own
case the con:xponents' of the P" and C}Il type cannot be disregarded;. these
components‘give pr‘ecisely '(see following paragraph) that complex structure

. of the réd{ation éhat‘actarj.stics which was already mentioned before.

We will now investigate the fields in ’the illuminated zone. First
of all, we will calcula%.e P‘I and Q" by deductions in the very same points
mx's and nuos_ : )

By, =)
'/o(“.o)

(AN

T wy (=3

Syt e —
n E oM T} (W

(62)

and we.substitute the Lengendre function with its asymptotic expression
P teos i - }/ FATON (63)

At the condition -

e sl

s (62) can be written as follows

el Tk
[ e - E*ve)].

o —i €y, 60] -
) ' (65)

Y] (‘; + 0)A
If we have a fulfilled condition

b,

then P" and Q" can be calculated by formulas

kP =
}/;’..r»fn(“."lc N
Q=

Ea e e
Y i ne v, a

Formmulas (65) and (68); Mc]?ﬁding +the entire illuminated ‘zone, Silo"
that ths additionsl field obtaineble from potentials PV snd QM Gonststs
of tu’o complex waves which completed (in Gppbsité dii‘éc’;tiéx‘;s‘)‘ "inv:erl'e‘i‘nent
around the world" journey-and have fallén (wore caug'ht.)'i;n tha‘given point
of the Lrraiiated space, having passed over the meviilan through the ailé'

i

of the shade  (€1), On the Maxis of the light""
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(68)), Since:these vaves ha.ve covered more than one half of the cir-

‘all such vaves traveling over the meridiens bocome focused (formula W)= elricosd [ i (._;) N (;__ ) p
=vaw|t ' Teoriel g(_.,J .

3 1) =
, ERYATANS .
cunference they experiexmed a strong weskening and give a small correc~ ) W@®)=—2)7Mc ( Tt/ (70)

tion to the fields obtainable “from P! and Q'. i X (v (n_o))g(M L")
In the 1uuxﬁinat,ed zone the'-potentials P! and Q' produce the basic, hore faction g(xd) is dete od 5

"direct" field originating during the falling of a plene wave on an ideally

g(E) =V (5 0)=:

cl:l
‘ . ¢ St
reflecting sphere, At a certain distence from the shade boundary (60) Yr g‘ @, (1) ¢

the el tic f£ield, ble by P' and Q', should transform For W(l) end \1(2) ve have moro ccmple,. fommlas

. N

into a field determinable by‘ the law of geometric optics. ear the \V‘"(ﬂ):U“’(D) - ,h, o,
shade boundary, in the semi-shade zone, the potential P! and Q' are . (72)
T @) = U (0) — sy U O

determined by formilas (43), It can be shown that, during the departure
ubere the cuxiliary functions u(l)’ v(2) and U are detormined by e

prossions

from the shade b into the illuminated zone, the diffraction formu~

1as derived for the semi-shade convert into negative formulas (formlas

S =i F’ (P pg—ie G
ina genernl form but we will not analyze it here, My sinb FEN

of geometric optics). This conversion was investigated by V. A, Fok (6)

Vo
U@ =—21 ,;Mfe'(’
Pu'agnph 5= Calc\&?ting Fo: as for Radiation Characteristics £
at Greater Values of the Para- i . = X O — ) f (M
m_e.f@r_Al_@L

The fomulu 11sted by us' in the preceding’ paragreph sllow the radla- ) ; UR (0)=

mew [ m (052} o (3 -
o e (=9 gp—ie" 5

tion chnracteﬂuticu of ‘a apharical surface antenna to be calculated at

greaur alphn vnlues. During the di!‘ferentiatim of the P and Q poten- ‘ . . -

] ACLELV{UESR
tials it'ds neeeugary 4o retain only the main members, o R

y P

) : - ) + A L [T
We will write first tie asymptotic sons for compl teris- : . =3 ’u =5 i
tcs W (theta), W) (thete) and W) (theta) in the shede wme, 1, e, . . .

‘ rE= -2;/,—..\1‘:“'(”':’):‘o"""'”;/'-_
B et = : . A : o K=,

_—mm-—tﬂm?mwm%w mw

Declassified in Part - Sanitized Copy Approved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9



Declassified in Part - Sanitized Copy A ved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9

end the functicn f(xi) is equal

At groater yositive «i valuos the function f (xi) tonds toward
zero nuch faster then the g(xi) function. This justifies the inclusion,
in the right side of the first of formulas (72) of the component -
m W (theta): even though at xd N/ 1 this component
by its order of magnitude in H2 times smaller than the first one, but,
they gradually become equal l‘nrther in the shade and in the vicinity
of the "dark pole" theta = O, the second component, as is shown by cal-
culations, appears to be the main one, In contrast to this, the component -

o1 U (theta) is of no material importence during the
alpha M sin theta
calculation of “(2) functions and is writton out for symmetry, For-
mlas (72) lead to a relation (compare formulas (13):
W (m) = — W (=), an
We will now !nvestigate the illuminated zone 0O < thota < _‘g

Here, in accordnnce with fox'nmlas (33). -
W (@) =W W

W @) =W 4w
w2 (“) =\V""" + \V/"":

Declassified in Part - Sanitized Copy Approved for Release 2013/02/14

Forwn, W1 ana w(®)" 1t 18 possible to write, with the aid of -

formulas (65), the following approximate expressions:

which offer a alight correction to the basic terms, but only at the m:lnity
of the shade boundary, According to formulam (65) the expreuim n (79)
will also include components proportional to'f (:dz) and g (ﬁ.z),"but' o

- these components) as well as the focusing of "round the vorld" waves neax”

thota = 0 [ formilas (68)] , can be totally disregarded;
For the basic components in conformity irith the Fok forml,u [
above P_amgrayh 3, formulas'(26) to {28).1t is possible: ¢ write ‘sxpre

W' smOG(E') W“'.—-M-F( ‘ ’.Wm,"—“._é

fh== e Mo L 0

S CRICE
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Nédr the equator, L. e/, at theta =z _E_L{fornmlu (79) and (80)

‘give a smooth congrnence with the radiation chieracteristics in the shade
. "zone, for example, with formla (70). In the illuminated zome, st a dip—(
. tance from the équator, the variable xi' acquires greater negative values
and for functions F and G we use the appro:dmste formulas
FEy o 2 GE)-=2 (83)

con;sque;ltly, formulas (80) automatically produce & conversion
toward geometric optio-{fomulus (25a)] . Ve want to call attention to
the fact that formulas (80) include the variable xi! (81) and not the
able xi (LS). The physical cause for this is that the "direct" field
) in tbe il'l.umimtad zome is created directly by the incident plane wave
the phaae o vhich is proportional to cos theta (or z), whereas in the
shade zone_ (du.t., a8 in the case of round-the-world waves ‘in the irradiated
h;;x;a;;;)'er;) the propagation takes place over the arc of the meridian and
th; comaponding dimensionless varisbles (45), (56) end (66) are pro-
’ portional to the mglaa.
‘ Due to the fut that ir the previous paragraph we took into con- .

sideration the waves which passed ‘through the "dark" pole theh = pi.

34 +

Tn-the formilas of this paregraph they have
proportional to £ (xi7) or g (xi)] , ve cbtained the possibility of

- offering a qualitative explanation of the differant radiation characteris-
tics, discovered :Ln pa.ragra.ph 3, ' Namely, the oscillations in the ghade

- zone which becoms amplified during approach to the dark pole, arve explained
by the intarference of two waves propagating (with attsnuation) in oppo~

- gide di;‘euﬁons.and having equal amplitudes on the dark pole, The genern].

STAT

increase in-amplitude near the direction theta = pi is caused by focusing
the waves propagating over the meridians. The ﬁmreaae in the number of
oscillations with the Sncre‘ase in the parameter alpha takes place simply
because the waves propagate in first approximation with the speed of light
and in-this way the meridians pile up a greater number of stending waves,

To_what extent do the formulas which are given allow the radiation
characteristics of spherical antennas to be calculated at greater vaiges
of the parameter alpha? In order to answer this question we compare
(in Figure 28 to 30) the radiation characteristics for alpha = 10 ace
cording to accurate formulas of paragraph 1 and 2 (these curves are
marked by éhe letter T) and by the asymptotic formulas quoted in this
paragraph (these curves are marked by the letter A), In figure 28 to 30
the functions W (thota), W) (theta) and w(® (theta) show that the
asymptotic formulas for the value alpha = 10 give a perfect representam
tion of the naﬁre of the functions interesting us, Even from a quanti-
tative viewpoint the asymx;totic\ formilas offer a satisfactory result:
the divergence betwéen accurate and asymptotic curves do not exceed
15-208, © o ) - .

The dotted 1ine in Figure 29 also indicates ths i\mction U(l) (theta)
i, e, [’U(l) (theta):] and are U(l) (theta), A1l ca.lculutinnu by naymptotic
fomulns vers carried out with the aid of £ (xi) and g (xi) !\mction
tables, and Bessel mnction tables of the complex variable []_‘L]

Using Figures 28 to 30 as a basis we can t‘reely edapt the aaymptotic
formulas_for the calculation of radiation characteristics of spherical

105
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antennas at apn) 10,, The.error produced by the asymptotic formulas,
in their order of magnitude is equal to _]._ and, consoquently, upon an

in ‘alpha 11: quite rapmly_.

Figures 6 to 9 show the radiation characteristics W (theta) for
‘alpha = 15, 25, 50 and 100, In Figures 15 to 18 tho radiation charac-
toriat’icg W(l) (theta), and in Fléureu 24 to 27 the radiation eharnctariay—
tics w(z) (iheto) are shown for the very same alpha values,

At valueu.as large as these of the alpha parameter we already clearly
'sea that a change takes place in the radiation characteristics at
nlphu ——p infinity: the conversion from light to shade becomes smooth
and the zone, where oscillations and focusing take place, is forcibly
displaced toward the dark pole and the oscillations become smaller and
n:ore frequent,

The broken curves in these diagrams are the fpnean lines" of the

oscillating radiation characteristics. The mean lines represent the ab-

solute'value and phaoa of function W', w(l)' and w(z)' 5 respeotively,
.and in"the :lJJ.umimted hemisphere these mnctlons are determined by
formulas (8). -In the dark hemiaphoro they are derived from (43)-type
foxmulaa. These functions appear to be ‘the "bnsic“ components i.n the
nsy'mptotic expressians for the rndlation charactoristics, and the "addi- -

tional" components are derived as result of the waves vhich bypassed

the sphere through the da.rk pole. Uithoﬂt this midﬂ'.lonal component the

oscﬂlntions are, cbviously, no‘b obtained but only a smooth mean line

:Lndicating'the existence of focusing at thete —3 pi, This meen line

STAT

104
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ig presented by a dotted lina,
The curves for the radiation characteristics, plotted at conditions
(53) and (57), should interlock at

pil - thete A/ _1
) 1

On the‘graphs, plotted in accordence with esymptotic formilas, the short
sections of the broken curve give a continuation of the curves beyond
the 1limits of their epplicebility and, in this way, show, the degroe of
the interlocking curve,

Pa.ragraph 6 Resonences in a Spherical Antenma. Radiation
Impendanco

The graphs discussed above show the relation between the field of
radiation of a spherical surface antemnna and the angle’ theta at fixed
values of the parameter alpha, It is also ‘interesting to explain the
relation between the parameter alpha, which is proportional to the opera=
ting frequency, and the radiation in a given direction,

The dependence of the ahﬁolufe value of the function W upon the
alpha parameter is shown in Figure 31, According to formulas (14) this
function gives the radiation field of a spherical un'taxmo excitable by
the radial electric dipole situated on its surface, This dependence is
depictad during the fixing of valuss of the angle theta, which are equal
%o 30° €0°, 50°, 120°, 150°, whereby for the valucs 0L e.lpha < 10"
the cdlculations were carried out by the accurate formulas of paragruph 1
and 2, and by the asymptotic fonvmlas of paragraph 5, for the vulues

10 < alpha < 15, Because of the difference in the. cnlculntlon methods

. smarTv
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the curves show & certain jump at alpha = 10 indicating the degree of
) approximation offered by the asymptotic formulas.

Iir x-aa should exemine the curve for any one given value theta we
will £ind that it hes the nature of a résonance curve ~ during an'ic
crease in alpha the resonance maxima are replaced by mipima eud (as it
should have been expected .from the physical considerations) the oscilla~
tions gradually become smoother and the resonance characteristics taper
down to nothing, However, by making a compuisonAbetween the curves
for various values of the angle theta we see that these resonance
characteristics virtually are almost entirely illusory because the maxima
and minima for different angles theta are oriented at different values
alpha, The exception is constituted only by the first maximm oriented
on all curves in approximately one and the same point, at alpha values
of sbout alpha = 1, If this maximum should not be taken into considera~
tion then it must be acknowledged that the curves in figure 31 do not
indicate the resonance characteristics but the presence of interference,

'_rhis interference can be easily con_:prehended physicelly provided
the s};here is considered as a receiving antemna on which a plane wave is
falling, The fluétuations in the radiation gmplitude characteristics
(alpha = const, theta changes) and in the curves in figure 31 (theta =
cpna#., alpha changes) are due to one and the same &mse, i, ‘e., inter—
f;renﬁ of the "direct" diffraction unv.e and the wave which bypassed the
sphere through the dark.pole, The nodes and antinodes of the "semi-
gtanding" wave are displaced toward the pole theta - pi and the curv‘ua

in 31 are formed when alpha increases, STA'I;

For a final explanation of the problem regarding resonances it is
necessary to calculate the total power P radiated by the spherical an-
tenna or still better the ratio ° )

_r ’ '
i r=q. (84)

where P 15 the total power raiisted by the prinary rediator in the ab-
sence of the sphere, If the primary radiator is an electric dipole then .
is can berwrittan ’ ‘

(85)

.‘where Ro is the radiation impedance of the dipole in free space and R is
its radiation impedance in the presence of a sphere, If the primary

radiator is a slot (as in figures B and C) then

N Gy
| :lhz . (46)

-where G_ 1s the radiation conductivity (bilateral) of the slot, cut in

an infinite plane, and G is its radiation conductivity on the sphere,
If the sphere is excited by the radial electric dipole, qlt‘uaﬁd
on its_su::fnce, fhm ‘ o

j'm'(uypsmuau . .
U A EQV(G,t;),fsin()llﬂ (87)
o °

'S.un:n'.m

and by sub;atituting the series (11b) instead of V (theta, alpha) ;ie ‘

obtain
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‘ " alus [ (6) vy formula
:‘The‘res\zl‘bs obtained in calculatmg the v

one

(88) are shovn in_figure 32. We see, that the curve has only
' eaciamum; tH
ssed resonance I , namely, the first on .
y slightly 4ndicated by alight inflexions O

in figure 32 we ghould keep in

The re~
clearly expre

maining resonances ore onl;
‘ the curves, When evaluating the curve

the
ﬂnd that the frequencies of the natural electric oscilllntions of

sphere (ses [10], Pe 489) correspond 4o the values alpha, equalling
. alphay = 0.86 -1 0,50

alphap = 1.81 -1 0.70

alphag = 2,77 - 1 0,83
The fact is that the f£irst resonance on figure 32 takes place :fpru;dl-
mately at alpha = 0,86 and the two following are noticed at elpha == 1,

= 2.T.

alpmw;; the sphere is excited by a magnetic dipole oriented oo its
surface then the electric, dipoles, as well as the magnetic waves also

form
become excitad. Therefore, the value r can be represented in the

P=rtd r, . (19)

!
@ By

18 @F

et
Py
B Y
7
] &, @

1

ﬁmctionr and r ag well as their sum r are presented in
‘figum 33 in relation to the varisble slpha, Wee see that the oscilla-

tions in the radiation conductivity of the slot depend upon the gTaTRERYS

" 108

. 12
ra‘L the series of which are as series (88) which has , zeta»!n(alphn-)|

in the denominater, The resonance maxima at the slet are oriented’
approximately at a point .Hhsre their presence appears at the electric
dipole (tisu.Ie 32), In this way the resonances at frequencies
corresponding to the natural magnetic oscillations of the sphere do
not take place at all, This is explained by the fact that the natural
magneuc oscxllations have atteriuation-that is too high (compare[lo:] B
_When alpha —>3infinity the value r ‘4n both 1nstances shows a
tendency toward 2, Physically, this can be easily understood since,
as is known, the radiation impedance of a vertical dipole on a surface
(which can be considered as a boundary case of a sphere at alpha a
infinity) is doubled in comparison with the impedance in free space

and the radiation conductivity of the slot should tend toward the

"unilateral" conductivity of the slot cut in the surface, i.e., toward
1

2 G

(Paragraph 7. Radiation Characteristics qf a Spherical Antenna
During a theoretical 1nvestigation of the radiation ebaraeter-—

1st1cs of a spherical surface antenna we studied a sphere excitable

by simple primary radiators - elementary electric .or magnetic thpola_.
Such &n arrangement of the problem was due to the .fact that

we were interested primarily in how the sphere affaccs thn radx tLon."

field and this can be explained quite, well but only it the prhnary

!‘ield has a simple form,
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In the ca‘se“o{ .none'lementary pril_nary radiators, an entire series of
iu&iitxo; ;:harécterist'icn may appear not as & result of diffraction
‘ on the sphere but rather as a result‘ol‘ the complex nature of the
ﬁrimary irradiatiod, ,

‘ In spite af all that t‘he entire cooplex primary radiator can
be broken down into a comhin;ati-,on of ordinary ones and in this say
'(by addition or integz‘ation) the radiation oharafetsriati.o of a
.sphsrical surface an';eme may also be determined. By an eddition
of this type it ié necessary to know not only the amplitude but also
the phase characteristic, From these considerations not only the
stons W, W2 and W(?

absolute value but also the phase of func re

given in Figure 1 to 30. These drawings, for example, allow to find

the radiation characteristics of a sphere excitable by a system of

Figure G

Our results have often proven, howeve;. to bo direotly
'appliéable 4o real cases of sphere excitation, So not u?\ elemeptary
but a.half-wave slot ig cut in the sphe;re then at alpha values that
e;rn not t.cac Bl;mll the radiation characteristic’ should not be

110

noticeabl,;::ai‘facced by this change, It is exactly the séme if the
sphere is excited not by the elementary dipole but by a qpar‘her-wa’v_e’
vibrator arranged on the sphere in a radial dix‘ect}on in such a
manner ch;t. together with its reflection, it forms a half-wave
vibrator and the radiation characteristic of such a system should
not; diti‘er);mch from the function W (theta),

Even though the latter assertions are almost apparent it would
be desirable to verify them quantitatively on any given example,
We shall discuss a case of a quarter-wave vibrator (see figure G)

along which a current I (r) is distributed according to the law
Ir)y=lycosk(r—a) (upn a<lr<b) [CD)]
Where Io is the current amplitude, and b is the radius-vector of the
final pcifn of the vibrator (dipole), whereby
b=a+- ©2)

According to formulas (1)) each element of the current I(r)dr of the
redial vibrator gives a radiation field

s

. . J
Eo=1H_ =—¢kl(r)dr ‘T\

von., )

where, ‘according to the £irst of +the formulas (9), we have

W)= .
i e & @) 4 (0) — 4 () 5 (0) .
= Y@ )iy e ® pi) (cos8).  (94)
-, (@ ! N
Here criteria (12) and (31) are introduced and R, designates the
distance of the observation point from the centgi‘ of the, sphere.,.
The ‘ow._rall radiation field of a quarter-wave vibrator is given

by formula
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In the case of nonelementary primary radiators, an entire series of
tadia'vclon characteristics may appear not as a result of diffraction
on the sphe'r.;a but rather as a result of the camplex nature of the
primary irradiation, )

In spite of all that fhe entire complex primary radiator can '
be broken down into a combination of ordinary ones‘and in this vay
v(by addition or integraﬁon) the radiation characteristic of a
spherical surface antenna may also be determined, By an addition
of this type it is necessary to know not only the amplitude but also
the phase characteristic, From these considerations not only the
absolute value but also the phase of functions W, v(l) and "(2) are
given in Figure 1 to 30, These drawings, for example, allow to find
the radiation characteristics of a sphere excitable by a system of

slots,
1y

Figure G

Our results have often proven, however, to be directly
applicable to real cases of sphere excitation, So not an elementary
but a half-wave slot is cut.in the sphere then at alpha values that

‘are not too small the radiation characteristic should not be

oved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9

noticeably affected by this change, It is exactly the sv‘a’me if the
sphere is excited not by the elementary dipole but by Amqu’ar‘ter-vava.
"1b2‘atcr afranged on the sphere in a radial direction in such a
manner thaty together with its reflection, it forms a half-wave
vibrator and the radiation characteristic ;)f such a system should
not differ much fran the function W (theta), . .
Even” though the latter ass‘srtions are Slmoat apparent it uou;i.d
be desirable to verify them quentitatively on any given example,
We shall discuss a case of a quarter-wave vibrator (see figure G)

along which a current I (r) is distributed according to the law
I(ry=Igcosk(r —a) (upn a<r<b), (91

Where Io is the current amplitude, and b is the radius-vector of the

final point of the vibrator (dipole), whereby

b:a-}-%. .(92)

According to formulas (14) each element of the current I(r)dr of qﬁe.

radial vibrator gives a rediation field

SRRty

< — Lkl () ¢ (93)

. where, according to the £irs% of *he f£ormulas (9), we have

V= .
8 (@) 4 (0) = ()5, (p)

e P (cos®). (94)
n

=4 Yen+ -y

. =1 .. :
Here criteria (12) and (31) are introduced and R, designates the

distance of the observation point frowm. the center. of.the sphers.,: ;-

The ‘overall radiation field of ‘a quarter-wave vibrator:is: gi

"by formula

Declassified in Part - Sanitized Copy Approved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9



Declassified in Part - Sanitized Co

h
Viy==k 5 cos k(r —-a)V (8, r)dr. (96)

b
‘Substituting the series (9%4) in this expression and applying formulas

of the type .
o WP feoso -nt,m %=

— l._,‘cns(p _g)’."(p)-}-sm(F—')( (F)]

we obtain a series for the function V‘ (theta)

V() =i 2 2n41 iy L (@) 4 B) — 4 () 64 (B) PWcos B),

n @ (97)

p=hb=a+]. (98)

In conforuity with paragraph 2 it is natural to introduce a

.function

W B)=el 0T @), : (99)

and the radiation field of a quarter-wave dipole can then be presented

as follows

in

T X
Ey =4, —,f%IOTW(O), (100)

e

. where R designates the distance from the vibrator (dipole) base.

‘(péinb r = a, theta = 0) to the point of observation,

ved for Release 2013/02/14 : CIA-RDP8 043R001700010009:

iigure 34 shows the reaulvu of calcuinﬂng run‘ct.ion._w‘ ('tﬂotii)i b .
by to;ﬁglas (97) to (99) at alpha = 5, For the purpcse of bch}gtatxaon"
we plotted a dotted line which also repres‘;nts x;he t\mcu.on:ivl ( t)’za-ta) sk
for thc elementary dipole (broken ourves repeat Figure 3), As 1,
ovidene.r the radiation characteristics W (thet‘a) ‘and W (the\fu) differ
from each other only slightly. The arrangement of maxima and minime
in these characteristics is perfectly analogous, ) )

If ‘we should turn to the directivity diegrams, with vhich one |

usually confines himself during 1°end- the e ‘nl studiea
of antennas, i.,e,, to reduce both amplitude oharactensciu to a
common maximum, then the differeace between bath cases: will bo ;lmost
completely obliterated (eliminated). T

During an increase in the perametex- alpha, r.he ditfersnce

between both cases should also decrease because tho ra iuticn cb

' istic of a quarter-vave dipole on a sphere i.n th: illuminated

vO( thata(g lhould upproach that charncteristic vhich :Lt haa

empnneu (vacuus), ’l’he latter is only alishtly dit{erent frcn thn_

charaeteristiu of an elmntary di‘ le. In “the zmo ot ;ahade 'nd
aemi-ahada the charaotsristic should canvert into r\mction w. theta),

because the "dhu«naionlass heisht" (39) of a quar T-wave

tends toward ‘zer’o duri‘ng' increase in -alpha,:

On the basis of paregraph 5 it can established that'at arge”
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. radiation c‘hariscteﬂstica e;ra' in the semi-éhad; and shade zones
(Hizer;a' rediation is deteﬂlned by diffraction on the sphere), In free
-space, as well as in the illuminated zone above the sphera, these
composite radiators may have radiation characteristics different from

dipole rediators.

. &‘Concllusio.ns

The total results obtained allow a gamplete quantitative
i‘eprasentation about the radiations of a spherical surface antenna to
be pr;pared. )

The presenc‘e o‘t an ideally ref_leoting spherical surface may
brin; ‘a ;;diéal change into the characteristic of a dipole or slot
'which excite the surface antenna, If the radius of the sphere is
comparad with the vavelength then its radiation characteristic has
lobes the numbor cf which increases with the reduction in wavelength,

- The explamuon on tlie origin ol‘_ the lobes and other features
of the radiation charactenstics would be more ‘realistic if the
sphere 15 cansidereﬂ as a receiung antenna on which a plane wave is
'bl falli_ng. Ths lobes can then be interpreted as the interference of
blz‘a‘ﬂi;e'ct Aifi‘}’aot}on fielld excited by tﬁs 1ncidoli‘t wave with a
- “ri;hﬁ‘d-the-uurld' diffraction wave which by-passed §hrough the
. "dark pole”, being a bo‘g‘nt on thé sphere oriented at a distance from its

illuminated pul"t. At ;utficiently high values of the ratio alpha the
. lambda

‘adiation characteristic ‘has minute oscillations: onl,_y' in a small section

(theta ‘ })i), and acquires a simple form in the remaining part,

114
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A sxSherical antenna has almost no resonance characteristics,

Exceptions arc constituted oniy by values alpha 1 wheére resonance
occ'\u‘a near the natural frequency of the basic electric oscillation,

'l'l.ze radiation characteristics of ‘a spherical antenna excited
by composite primary sources pertain in their‘ ma jor part to the
characteristics of a sphere excited by elementary dipoles.

The phenomena mentioned above should take place also in other
more complex (compounds) surface antennas, In viéw of the.fact that
these phenomena can, to a large extent, change the directivity diagrem
(radiation pattern), they must be taken into consideration during o
practical utinzu‘tion of antennas operating in conditions of electro;

dynamic interaction with massive conductive bodies situated nearby,
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RADIATIOII CHARACTERISTICS OF AN ELONGATED ROTARY ELLIPSOID

¢ G, Belc:m

Par. 1, Vave Functions in Spheroidal Go;)rdinutes.

' In this report, the problem of diffraction on an elongated
ideally-conductive spheroid, excited by an electric dipole situated
in any/ given point on the spheroid axis and directed along this axis,
is discussed.

’fhe problem is solved in a spheroidal system of coordinates
xi, eta and phi connected with the Descartes coordinates X, ¥, 2,

by the ratios

x=[Y@—1)(1—1?)cose,
y=[V @@= —r))sine (L.1)
z=[&

and obtainable by rotating the elliptical system of coordinates

about the greater exis of ‘thé ellipse family, The ereas in this.

system of coordinates xi = const are elongated spheroids (elongated

ro‘barly ellipsoids), The coordinate xi changes from 1 to infinity

am‘l thef‘coordinate eta changes from -1 to A, The sign 2f desig-

_nates’ the distance between the foci of the spheroid fumily =iz

.v-z;hi[:“)’ = - . . const; In particuler, vhen xi = 1, we obtain an :Lnffm:.tely thin rod '

BE ' ' with.a length of 2f, On the spheroid xi = = const the value eta = o

corresponds to the equator of the spheroid (its J.ntersect:non a th the

Picture 3h
7 pla:ne z'= 0), and the values eta = f 1 are its poles oriented on ‘the
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£

e.xia; 2 vhen 2z = £ fxl, The metric coefficients of this system have

the form of

/:,=n/152— )(T—).
If one would look in the sphsroidal‘cooniina’hss for the .function
Pi‘ (Russian ietter P) satisfying the wave equation
AT+ £2[T=0 (1.3)
" in the form of

M=RE®S() m?, (1.4

then for R(xi) and S(xi) we would obtain equations
rq - 1 4R —= . 2 —0
@G+ 5 (A4 o g ) R=0 =),

— me
l—"l)d,l —211 <A—}-c’n’—fj|,_,‘q)5=0 (=1=<a<l)
(1 Ry

where the params;ber

c_.kf—z——"f C (1.6)

is‘ proiaortional to the ratio in the distance between the foci of the
ellipsoid family to the wave length,

Solutmns of these problems were investigated in the report (1).
We shall write out here these results of this report which will be

necessary to us in further investigations,

1043R001 7000 0009-9

The anghlar functions:S(eta) appear to be the functions

0. v.>=2fd:-’(c) Pl (D)

vhich are regular in points where eta = ,( 1, Here P* (eta) are
ndn

the associated Legendre i‘unctions, determined in such & manner that if

- : n=cos ¥, ' R (%))

Py (cos 8) =sin" &
|
where Pn (cos,«?’ ) is the Legendre polynomial, The coefficients

d™P, (cos u)' R
W , . (1.9)

nin“"l (C) are determined from the trinomial recurrent ratio

AT dmi, + Btd - Cndn =0, (1.10)

-2 n—2%n—2=

vhich binds dg’l with the indices n of one and the same evenness.
1
5

o tly the coefficients dp

qr differ from zéro only when the
indices n and 1 have one and the sa;ne evenness and in this comnection
a prﬁe at.the si@. reﬁz:esenting‘ the sum i.n formuia‘ (1. 7), and mﬁicate
everywhere below that the summation is carried out in accurdance

with indices n > O of the very same evenness as 1, The values

. kn, n ', Cm are fixed by formulas

(n+2m)(n +2m—1)
@n+2m—+1) (2n+2m——l)’
2nt+2n(2m+ 1) 2m—1 +
(2n +2m +3) 2n+ 2m — l)

AIII
Bml
.- +Mﬁ_"'_ﬂ__f’_t_p el

C"' (n+2)(n+l)
(20 +2m + 3). (2n+2m+l)'

145
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whers

x'"——-i;,—' (1.12)

1 =
and bn:: is comected with the constant A included in equation (1.5)
by tho ratio
' =— A7 —m(m+1). (1.13)
The coefficients d;n’l are standardized in such a way that
(1)
S (€, 0)=P}, rim (0) (I — ueTHoe),
d 1)
dTgm. (. n)] =[ P;",m(n)J (¢ — neueTHoe).
=0 =0
(1.14)

At a fixed value, m, the angular ﬁmctinns.sr(nﬂ_ (C, eta) form

in the interval (-1,1) an orthogonal system with a norm
1

n + 2m)!
N,,,(C)—“‘—S[S")l (o, Witdn=2 Y} (7P g gt
(1.15)

vor future reference it is convenient to introduce a designation

: S L n 4 2m)
oy O =i S S W AT O 110y

In particular |

3, ,(c)__z d' =S (e,

ved for Release 2013/02/14

The radial functions R(xi) of the wave equation are fixed by terms
IH

R(l) (c, ) m 1 (Ez — l) (“)—-m
. XE (— n—!(ll+2m)| d"'lj,,},,, (@),

Ry (e 9 =Ky (2 — 1) (7" X
2 ( .l n-z(n—{—?m)‘ dm'lll (tE),

vhere
rem

2"mls,, !
=y g, 1

n,,(&):‘/?’:T Nk . _19_(02)‘

Km,l= (l .20)

(1.21)

.and Jk 13 (cxi) and Ny /% (cxi) are the Bessel functions of first and

second Gxdar. ’
2, .
The functions R( ) (c, xl) and R‘S"i (c, x1) can also be presented

in the fom of

RY, @ 0=, Y @ Py O (1.22)
R (e, E)=»m,2 aniQr @ (.2)
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The double prirne at the sign of the sum in formulas (1.22), (1.23)
’ indicates that the summation is ca:f‘z"ied out from n = -~ infinity to
. n = infinity in accordance with‘ indices n of the very same evenness.
28 1, .and the ‘coefficients n“m,l and muhI have the form of
nedi (2! (
o -1 (n,',-_f_‘_]z_ (7_+,,,’)] 2 dz”l(ﬁ_%m)] (l-uetHoe)

o+ g o 1) (‘:_
l-ueueTHoe,
omiq3 (m +2 )(T Fm Edmz(n F omyl ( )

(1.24)

Pri (l———_z.l + m)l
9m)l  (lueTtuoe)
(Tl) (m— ) amd, 2’4;:..:("4;‘_"0 .

— 82 (-:— + m) !

5 — g (n + 2m)l (l-uevetnoe)
=g ) e Y (1.25)

The associated Legendre functiong at xi 2 1 are determired in

“accordance with Hobson (2).

We wish to mention that during the calculations' the representation

(l) is convenient to ‘use in the form of (1. 19), and R;z) in the form

N of (1 23) ‘It is immediately avident fzom these terms that R‘f‘li

(¢, x1) does not have any cha.racteristlcs whereas Emzz)l_ (2 )d) has a

chnracteristn.c a‘b xi = / 1,

1043R001700010009-9

The radiation condition on infinity is satisfied by the function

RO (e, =R (¢, )+ iR%, (c), (1.26)

vhich-at exi——) infinity has an asymptotic representation

olet

R‘a’, @ a)_(—:)“f”'*‘ = (1.27)

-1 omega t. .
Ve select the time dependence in the form of e ). Finally,

the Vronskiy determinant for radfial functions R( ) (cy xi) and }‘1(13)

(¢, xi) equals
R, (e, %) g R, (09— RS, (@8 g R =L Lo
(1.28)

Par, 2, Decomposition of a Plane and Spherical Wave According to

Spheroidal Functions

Next ve shall search for diffraction fields and their potentials

in the form of d positions (breakd ) according to spheroidal wave

i‘unctmns. For this reason ve shall first analyze the primm‘y fields

" in accordance with these functions,

The decomposition of the plane wave
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should be sought in the form of .
. bécausé of the fact that at xi —~—» infinity the condition of

e M= E DR} (, 9 S8 (e, ), (2.2) | . radistion into infinity should be fulfilied, At = < :d.i the
‘ ‘decomposition (breakdown) should be sought in the form of

because the function (2.1) does not depend wupon Cp and has no -
. 1y ”" (1) (1)
characteristic at xi = 1, Utilizing the orthogonality of the angular eR' =2 DI (EI) RM (c’ E) so.: . K
. I=0

27)
functions, their norm (1.15) as well as the known formila

ey v i because: it should be right at xi = 1, where ‘the spherical wave
TE=N et 0P, @3

nel)

(2.5) has no characteristics. It is necessary to assume in both
cases that m = O because the term (2,5) does not depend upon P .

1
In oxder to determine the coefficients Dl, we will assume that

(see for example (3), page 895), we will obtain :
’ ’ ° the values xi and exd in.the ratio (2.6) tend toward infinity. Then

etk —ze.q,—gz( i 5u1 (c, I)Rm € 5SY @ (24) R=yV A+ EZ=[VE—g+ 1= @28)

(=0 e oz,

R=Vrt(z—zF~R—ZL=R—zcosd (29)

During the decomposition (breakdown) of a spherical wave .
where R /J' - are sphericel, amd T, ¢ , Z aTe cylindrical *
e:f, , - (2 :5) coordinatea of the observation point, . By converting the ratio (2 7)

by means of formules (2.8), (2.9) end (1.27), we can write :-

i
originating from point xi - nl, eta =1 (2= zl, X=V = 0), it is

necess to dist: ’ ) ' ) - N ‘ ' 2.10)
ary to distinguish tuo cases, At xi > xiy the decompositiun ) ) R gmiieosd elkR 2( i l+l D, (EI) s(l) (c; cos®) (2.10)
should have the form of ) . R = . ST )

and finally, by comparing (2.10) with formila (2.4), in vhich eta’z -

=), D,&) RY) (c,8) SW.(c, . ;
2_; G (€.8) Soz(e,m) 2 - ‘ cos A} 5 we will obtain

So,(.)

D) () =2ik =Ry} (c b).
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Thus for xi D> x:l.l, the decomposition of the spherical wave has
the form of '

e"‘R’ X e ‘ @ 1 N, 9 14
—2ik E o RSl @8RS @ 9k (e, ). (212)
i=0
As ve turn to the determination of the coefficients 15; (),
we wish to mention that at xi :'xil and eta y( 1 the spherical wave
(2.5) does not have a characteristic and the term (2,7) should coin-
cide with (2,12), This condition, apparently, is fulfilled provided

we write

so, (c r)

Dy (&)= 2ik 242 2 RS (¢, &), (2.13)

ice, if forxd £ h
So, (e, 1)
kE RO (e 5) RY (¢, 9SY (0,1 (2.14)
For the purpose of verification ve shall calculats a.lso the

fluctuation of the derivative in xi from the function em’
TR

dm‘mg the passing through ‘the surface of the spheroid xi - }cLL
Applying the ratio (1 28) we will obtain :

[l eikR’ ] —
% TR Jen e, f(fl—l) ()

ved for Release 2013/02/14 : CIA-RDP8 043R001700010009-9

vhere

o 1) . N 0
Sb«‘ (F'..._I) Slgl; (e, n)=25(n—1), (2.16)

)=
- =0 N(‘"
because at any given value 1

M(n)s“’ Covdr=SE e ) @)

and such decomposition coefficients in the complete orthogonal
system S( ) (c, eta) are contained in the double delta—ﬁmction at

the point where eta = 1,

. 1 .
elkR , ond it indicates that also the normal deriva~
R!

tive, differing from the xi derivative by the mltiple

Thus, _d
. dd

(2.18)

when pas;mg through the surface of the spheroid xi = xll is con-
‘tinuous eyeryvhere except for point eta = 1, where the normal'deriva~
tive experiences a drop having the natm of a- delta—f\mction,_ a .facf;
i.:lu.ch was. to be expected from physical consideratiéné,

Finally, we will obtain the decomposition (breakdmm) for the

magnetlc £ield of the vertical electric dlpole

e : . v
"= e S (1 e )‘smﬁ, @249) -
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ordented in the point where xi = ), eta = 1 and directed along the
axis of the spheroidal system of coordinates (along the axis z), Since
Hor = .HC,‘,?- =0, :Luhicating_ that,
M= -1 sing, (2.20)
and the Descartes component H, satisfies the vave equation, ‘then Hoﬁh;‘
should be decomposed (broken down) according to spheroidal functions
With an azimuthal index m = 1, whereby for xi > xi, it should be
cfkR! ! . N - () “oth "
- —— — ) gin #) = H . 58! . D
” (1 I,M,)sm 0e= Y10, 60 R (e, 9S8 (e ). (2.21)
I=n
Assuming that in the term (2.3)
y=Ccos 8, (2.22)
then, by differentiating it by 4% and consequent comparison with the
term (2.21), in which it is assumed that xi .o infinity, cxi —%p

infinity, ve will-obtain the correlation
©0

. [
1_22 (—4'D, (E,)sg:)l(c, )= ”LE',,EB =" @n41)7 (%) P! ().
Hence, by: applying formulas (1.18), {1,20) and (1,16) we caz(r)dzsénnine
.the cq«;,fficientla Dl'

The ‘decompo'sition of the mx‘agneti_c field H‘;i,,:for the case where

xi - 7 xil is then obtained in the form of

. oo
H' .= p2 4 Al N
H\o—k?”, % v_;,i R

- 1

R, )Y o )

0o

043R00170001000

Froﬁ the very same consideration as mentioned above, at xi < xil

one can write

o
M=tep—L_ Yo po o, '
] f’[ v 12{ Wy Ry (c%) RY (e, £) Sif;‘(c’ n). (2.25)

Par, 3, Radiation Characteristics of a Spheroidal Surface Antenna,

We will consider a problem regarding :.‘yrmetrical excitation of an .
ideally conductive spheroid xi = :ci0 with an elementary electric dipole
oriented on the axis of the spheroid.at the point xi = xL.L’ eta = 1

and having moment p directed along the axis (see Fig, 1).

EA
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The primary field of this dipole is given by formulas (2.19),
(?;.2'4) and '(2'.'25). The secondary field Hl should satisfy the condi-
tion:of radiation-into infinity, and in additic;n at xi - 3d1 this
fiéld does not have a characteristic, Therefore the decomposition

of this field 'everywhere has' the form of
(3
1 (3) R,; € HSY (e, @3.1)

Since the magnetic field.has only the Hfhi component, the
boundary condition vill be

Ely,=——_1 0 [/m—j
"'": icy B —m E[VEZ_I Hin-E.=U~ 3.2)

By applying it in the sum of fields (2,25) and (3.1), we obtain

oy Rl (8 £ [va=Tale. o]
N, d
" T [V"—I RO (e, E)]

AI(EI) ={— 3.3)

bty

The completé field at xi > :CL_L is given by the sum of fields
(2,24) and’ (3,1),, consequently.

H, —kw”/:2 lzr G B RE-c 9 SY ) mh (34
Lo Si— .

1=

ved for Release 2013/02/14
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where
Fi () =
w o o d
— I R () R} (e.&) zz VE=TR{ (¢, 8)]

Iy [y — 3.5)
e [V E=TRY Y ]

In particular, when the dipole is oriented on the very spheroid,
i, e, if *y = xi then, as a result of (1.28), the formilas become

simplified and we have

i °i,t sy
cVEST[N,,,{:E[I F=TRY (p,e)” + 68

'F, (Em Eo)z

Thus, at :d_l = :d.o
TR 51,0 RE) (e, ) S{!)
. 1L RV (0 8) Sy (e, m)
c(E—1 d —
f ( 0 ) =0 Ny {E: [ 2 “R(El\(l‘,E)J ;__ .

H,=kp.— 3.7)

Tinally, in the wave zome, where the function E(a)can be substituted

by its asymp‘hotlc representative (1. 27) we can write N

H = --k ﬂV L) ’ 318)
=k SV (9), c:

vhere at’xil - xlo the function V. () is given by the term .

(~1) 9, ,S ,(t cos )

- -)E“ wo [ [,/Ez_ue‘, @), .

Declassified in Part - Sanitized Copy Approved for Release 2013/02/14 : CIA-RDP81-01043R001700010009-9



Declassified in Pa

?'he function V (&) we also call the (cqmi)lex) radietion characteris-
tic of an elongated spheroidal surface antenna,
‘ For the case where ¢ << 1, i, e., for the case of very long
_waves, formila (3.9) acquires the form of

) _ sind .
V(8)= — E..s “E.\—i-l =g (&)sin 8, (3.10),
®@—1 (7|nh—_T

i, e., it represents a radiation c};aracberistic of.a dipole in a free
space (sinusoid), miltiplied by the coefficient g (Jd.o), determinable
by the form of the spheroid. .
Par, 4, Resul tﬁ. of celculations,

The radiation charactsristi;: of an elongated spheroidal antet;na
depsnds; upon two parameters: ¢, proportional to the ratio of the
focus distance of the spheroid to the wave length of the radiat;:r
(emitter) ’ '

(4.1)

éi_ﬂd Jd-o bmm}i with the rati$ of the spheroid semi-axes a and b
(alpha > B) by formila ' '

043R001700010009-9

szgse parameters are included in all forrmules and should therefore
be accepted as basic, However, during the evaluation of calculation
results together with the basic parameters, we will also alwny.e have
in mind the parameters ka and i(b, connected with ¢ end xi; formulas

ka =%, .

kb=c)/E T, (4.3)

These parameters sre interesting in the fact that, if £f—» 0,

+ and :d;~—) infinity, the prodict fx:lo remains constant, i, e., if

the spheroid passes over into the sphere of radius rho = ﬁdo, both
parameters (4.3) convert into krho, which is an ordinary parameter
of the sphere, .
The calculations were carried out in accordance with formul‘s
(3.9) for all pairs (sets) of parameters
c=0,0801;"3; & 7 (4.4)

and

;E0=l,000801; 1,005037; 1,02; 1,154700; 1,34164] (4'5) )

or respectively

= §=12510; 5,07, % 15. “s)
Mﬁhermore, according to formile (3.10), we obt;ined the '
charactiristics for ¢ = 0 and for 'bhé .very same values 91‘ the.pgrap
meter x:L; (or —2), ‘ . )
The calculation results are given in Fig, 2, wherein the polar
system o; coardinates represents thé‘ directivity diagrams, i/ e, N the '

=~3u14 afebln anmnlow mediatfon characteristic of a spheroidal surface™

le maximum, All diagrams oriented on one €
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cor‘respond‘ to one and the same value of parameter c, marked on ‘the

left, All directivity diagrams oriented in the colum under the ellip-

soid’ correspond to the form of the rotation ellipsoid represented in
the upper line where tha_ratio of its semiaxes._a_ as well as the value
of the parameter :ﬁo are also indicated, B

Near.each‘curve the corresponding values of the parameters ka
and kb are also indicated.

The ra&iatil)n characteristic is obtained from the directivity

- dlagrans by miltiplylng by the value max | V (&) I . An idea about
the.cha.racteristic can be obtained, by simultaneously studying Fig, 2
and the graph showing the dependence of mex I v («9’) l upon the param-
eter ¢ during the fixing of ratios of the spheroid semi;Jms 8
(Fig, 3, a) or upon the ratio; of the semiaxes _a_ during the g:ud.ng of
values of the parameter ¢ (Fig, 3, b), It is i:mediqbely evident from -
Fig. 3, b that, at any given value of the parameter ¢, the amplitude
meximm of the field radiated by the antemma increases sharply during
an increase in the ratio of the semims 2.

“A study of Fig, 2 shows above all tha: the immber of lobes in-
.crsases with the increase in the parameter ke = c:d: An analogous
phenomenon was observed also in ths case of a spherical antenna during

4the inerease in’parameter alpha = krho, where rho is the radius of the

. sphere (see [4] Fig. 1 - 5), Together with the curves for a_ =

'b
1.5 are also g:wen (by dotted 1line) the directivity diagrams for t

sphere, corresponding to the parameter alpha = krho = ¢ (aitto Fig, 1-4),

STAT

' §5

Jtoo0801

Je

§+4005037

(B

Se1154700

21341041

ka<kd-0

ka-kf+0

ka=k8<0

kawk8:0

ka=-Q398
Kb+ 104

ka=0,99
k0=010

w671
=447
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Thus, we compare an ellipsoid having‘e. focus space 2f and a sphere
of the radius f, As is evident from a comparison of the curves,

oriented on one line, Fig, 2 (c = const), with the reduction in the
elongation of the 9].'I.ipsoid,. its directivity diagram approaches the
diagrai of the sphere, which could have been expected from ‘physical

ions, ' This approximation h depends upon the parameter

c til_m greater the parameter, c, the slower the approximetion), And
"80, for ¢z 7 end _a_ = 1.5, the characteristics of the sphere and
ellipsoid have almost nothing in comnon', vhile at ¢ & 5 and an
identical ratio of semlaxes, the characteristics of the sphere and
ellipsoid are qualifatively quite close to each other,

“0

043R00170001000¢

A ‘characteristic feature of an elongated spheroidal antemna
appears to bo a strong‘ rad':'.a:bic‘m backward*, In this case, cach con-
secutive lobe in the entire series of characteristics appears to.be
stronger than the preceding one and the Iobes are separated from each
other by-deep minima, which reminds one of the characteristics of a
traveling wave antenna, Particularly clearly expressed is this
phenomenon for ¢ = 5 and also at ¢ = 1, when the radiation diagram is
1ittle ;i:li'ferent from the sinusoid (¢ = 0); the directivity phenémenon
in the z"ear semi-space in the case of _:_ = 1.5 is already clearly
noticeable,

For the purpose of comparison we formulated the characteristics
of a traveling wave antenna, consisting of a section of thin wire‘
with a length equal to the greater axis of the spheroid, It was
assumed thereat that the current wave propagates along this wire with
the speed of light in the direction of the negative axls z (i. e, ;
from phs‘ poia in which the exciting dipole is situated to t!‘:e épi)bsite

end of the spheroid), . ) ‘ P

“#From the viewpoint of geomt.atric optics, the entire spac‘:n‘a is div::;.ded

into two semi-spaces: the illuminated (0 < ';9‘ < —Z-F- )ami ;haded :
(Z Ly < T ) (see Fig, 4). The backvards directién is called -
theadire"c'bion leading toward the shaded senispace. o
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diagrams tending toward the traveling wave, He_ wish to mention that

This simple model offers a perfectly the parsmeter, ka, for the given value, o, remains practically unchanged

identical arrangement of lobes as (ka = 3.00 - 3.06 for ¢ = 3 and ke : 5,00 = 5,10 for ¢ = 5), whereas

the spheroidal entenna with the ex- the parameter kb changes considerably (kb = 0,12 = 0,60 for ¢ = 3 and

ception that its lobes increase more ¥b = 0,20 - 1,00 for ¢ = 5). Thus, during & Teduction in the parvameter,
rapidly with the increase in the '
angle‘ ;9' .

For these cases we also computed the

kb, the dirsctivity Fliagrnm draws closer to the diégx‘m of the standing
wave, and, during an increase in kb, approaches the diagram <.>f the
traveling wave, )

rediation cheracteristics of a - ‘-I’V/ N
standing current wave, under the o

assumption that in the section of wire

mentioned above - & K z < a, the

Figure‘ A traveling wave 9f the current is re-

flected with the coefficient ~ 1 from

the end z = -a, The characteristic of such an antenna is'symmetrical

relative to the equatorial plane ,‘9- = x .
. 2
A comparison of the characteristics for the values ¢ = 3 and ¢ = 5

is shown in Figures 5 and 6 which also bring ‘the directivity diagrems

of the spheroid for the ratios _~_%_ = 25; 10; 5,07 and the diagrams

of the traveling (Russian sbbrev. Beg) as well as standing (Russiean

- abbrev, ‘St) _‘wmres of the current. A study of the drawings shows.that

the curves for the spheroid occupy an int diate position bet the

. o 1§25 Seqomoy |
curves for the traveling and stending wave, whereby an increase in the i . B ) X 2 g—zfo 100337 |°

elongation of the spheroid is followed by a change in the directivity i : N ) 3 ﬂ;'iﬂ §+102

164 . STAT
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"The indicated analogy between the directivity diagrams of the

spheroid ‘on one hand and the standing or traveling wave on the other -

. hand does _not extend to the phase characteristics (which we will not
discuss further here). Namely, if we should calcula‘te‘ the radiation
from a semi-standing current wave, then, by propex: selection oi‘l the
stanc}:i.’pg wave coefficient, it will be possible to attain .an accurate
conformity with the amplitude charateristics of the spheroid, as
given, e, g., in Figures 5 and 6; however, as shown by calculations,
the phase characteristjcs of such a semi-standing wave are much
dif{erant from the phase characteristics of the spheroid,

ny .

o

\p-tn
A

!
2

\H
i L ( §=25 ¢00060) |
=1, o

{12 0 E-io0sgar
ez | i6e23 §-5m girﬂzl .
50° 120 #50°
Tigure 6

I;x the case where c = 7, the radiation cheracteristics have a
somevhat special character sometimes very reminiscent of the charac-
teristics of the standing wave ( g = 10; 5.07). It appears that,

together with the previous picture of radiation into the backward

' semispace, we have here also the screening characteristics of the

ellipsoid, i, e., a darkening of the rear semispace., We wish to
mentioE that the latter effect in pure form practicelly does not
appear for the cases investigated by us. An exception is the curve
fore =7 and -%. = 1.5 (lower right angle), for which the parameters
ka = 9.39 and kb = 6,26 appear to be the very highest of all these in-
vestigated by us.

An idea about the picture corresmndﬁg to the very high values
of thése parameters is offered by the V. ‘A. Fok theory (5). This
theoryffllows one to calculate the field originating during the in-

cidence of a plane wave on eny arbitrary convex body provided the

. rediusﬂ_of curvature, rho, of the surface.sectionr‘ot‘ the body is great

in the plane of wave incidence in comparison with the wave length and

) distance from the body on which the field is investigated,

According to the principle of reciprocity, the_f}ie‘ld‘ in the )

distent-zone in direction o} dis (for our case) e‘qui\(alent:to,jh.e’

field in the pole of the ellipsoid produced by the plapé vave falling

at an angle %—’9.
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According to V, A, Fok, the field in the zone of light can be,
under the conditions enumerated above, sufficiently well transm‘itted
by geometric optics, and 'in the field of semi~-shade (directlons close
to ,3 = 90 ) i’b decreases rapidly and smoothly whereby the

Vrats of reduction do‘pends only upon the parameter, krho,

The radius of curvature of the.rotation ellipsoid in its pole
1o 7ho = - B2 and 1t oén be considered as changing but 11t1s up
to d:u-actio: ,9' of the order of 120° whereupon, i, e., é]:eady in
the si’iadgd zone, it begine to ‘vnry considerably,  But at a greater
krho, the\field in the mone of the shade is very small and is of o

- interest.

Thus, we cen say that, at very ‘great values- of the parame"l‘:sr
krfo = k v » the field of the elongated spheroid in directions I\?’ »
not exceed:l.ng appro:d.mately'l‘zoo, is the same as the field of. the sphere ‘
with a redius rho = _Tz__. This field was calculated in a previous
x“gpﬁrt. of this collection, where Figures 6 - 9 show th‘e‘radiation
chéré’cterist;cs of the sphere fcr‘ values ofvparé;netefs alpha = krho

,:"15,. 25; 50, and 160. “En this report, on Figure 28 there is shown
"how the curve celculated in.accordance .with the V, A, ?o’k theory does
not. reproduce the nature of reduction of the radiation ‘chatséteristic
and giva‘s. only the mean 1iné of the os;:ﬂlaéing c\n’vé. it is evident
thgref;om that even for the very; greatest of. the inveétigate& vaiues
of the parameter. krho = k...'g_z.' = 42 (=7, —-?r = 1,5), thé ploture
obtainable b?' thé V. A, Fok theory for'vez.'y great krho values, 'i's still
- considered as unrealizable, In order to obtain such a picture, even

STAT

168

if only _i.n general outlines, it is necessary to reach values of the'
pnr;amatér krho ~ 10, for which even at £ = 1.5 it is necessary
to take ¢ A% 16, At such a value of the parameter ¢ in the (3.9) .
series, it would have been necessary to qaiculats appx;oxﬁnately 40

members terms, )

Upon completion of this report, reports have appeared by (6)
and (7) ;levoted to the symmetricel problem for a rotation ellipsoid.
Calculation results are available only in the second report, name]_.y,
for the electric dipole oriented in the very pole of the ellipsoid
but for a much narrower zone of parameter chenges, Wherever the
results of report (7) and these of our own article can be compared,
they do coincide,
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DIFFRACTION OF ELECTR@‘AG"EMC WAVES BY A DISK formally transforns the system (1,1) into an elongx;ted spheroidal

M. G, Eelk_ma system of coordinates (see (1), Par. 1)

Par. 1 Radiation Characterist:\cs of an O'blatc SEhelold and Disk . 1l SRV ET =)
during Their Fxcitation with a Vertical Electric Dipole. - x=['V{# (I —=?)cos ¢,
v=fV(E— (1 —q?)sing, . (1.3)

The solution of the problem concerning the diffract'ion on an 2= iy
=[5
oblate rotation ellipsoid can be obtained in the following manner.
We will analyze a system of coordinates xi, eta, phi, con- and the wave equation in the system (1.1) - into the wave eqiiation
nactea with the Descartes system by ratios 1 in system (1.3). In this case the parameter ¢ m= kf, included in the

Lo . wave equation, transforms into ic!, Consequently, any solution of
x=F[V(#+ 1)(I —)cose, S
y=[VEF DT —=)sing, (r.1

z=fin.

the wave equation in an elongated spheroidal system of coordinates
(1.3), end any formula equitable in that system c_onvert into a solu~

tion of the wave equation in the oblate spheroidal system (1.1) or

This system is obtained by rotating the elliptical system of into a formula equitable in this latter during the substitution

coordinates sbout the small axis of a family of ellipses, and we R N
S g

o (Y

case xi varies from O 'bo infinity, and eta varz.es from -1 to £ 1, the i - = —in

shall call it the oblate spheroidal system of coordinates, In this

coordma‘he surface xi = const is rspresented by an oblate spheroid, mrt:her we will make use of all the formilas of report (1), by -
t .

xl-= 0 is-an :Lnﬁ.m_tely thin disk with the radius f, and 2f is the changing (1,4) in these formilas, This change will be fuplied in re-

distence between the i‘of:i of the ‘)ﬁsriaional cross section of the ferences.

spheroid family, The value eta = O corresponds to the equa{'fors of And so, by changing (1.4) in fornula (3. 9) of report (1),

the spheroids, and eta = "f 1 corresponds to their poles. obtain the radiation characteristics of an oblate spheroid i = ;d.

. Sullzs,t::xtution excitable by a vertical electric dipole oriented in the pole of the
TRV spheroid (Fig. 1). s

=

V)= ai - (—i)’=| 1 (== ic) S}l} (— ic, cosil)

ifr . =2
A : - o M G 0 g [V RO e )
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" When ?do —» 0 the oblat:a ‘sphei‘oid changes into a disk with
radius f, By changing to the limit at. :do —> 0 .i\l formila (1.5),
‘we obtain the radiation characteristics of an infinitely thin and
idaaily conductive disk, exci‘table by a vertical electric dipole
oriented in its center (Fig. 2)

Vo= 43 a0 sl
1=0 N"'(_“)[de Ril(—ie. IE)JE-o

(1.6)

Figure, 1

It can be shown that.at any given \}slue of the paica.meter c

for the vertical electric dipole on the disk takes place
= -
v(5)=" (1.7

Physically this is explained by the fact that in the direction

" of ,9’ - L the currents on the disk, because of their symmetry,
i el :

do not radiate.

043R0017000100

At & & 1 for the oblate spheroidal antenna, ve obtain from .

formula (3.10) of report (1)

|)=— sin 0 — o (it)sing. (L.
VO = Chure sttt D € (isind. (18)

It x,—> 0, then

gi0)=1, : (1.9

and for the disk at ¢ é 1 takes place

V(®)=sin8. (1.10)

Consequently, the radiation characteristic at ¢ @ (1 for the -
oblate spheroid and for the disk (as well as for the elongated
spheroid, see (1) par. 3), represents a sine curve (sinusoid), i. e.,
the radiation characteristic of the dipole in free space, multiplied
by the coefficient which depends upon the eccentrieity of the spheroid
and is 8qual to one ror the disk. Thus, in a speciel (extreme) case
o!‘ 1nf1nitely long wnves, the presence of the disk does not affeot 'the‘ 'Ajk
rudiation characteristic of 'hhe verticsl electric dipole oriented in

the center of the disk

to fomula (1 6)>.‘ The T8
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of the disk I v (3) , is given (continuous lines). The dotted
lines represent the radiation characteristic of a sphere, excitable
‘by a vertical electric dipole, orien‘ted on the surface of the sphere,
for velues of the parameter alpha = Irho = ¢, where the radius of
‘che sphere rho is-taken'as equal to the radius of the disk f (sce

(2), Figures 1 - 3)

Figure 3
Tt is ev1dent from Fig,” 3 'bhat for ¢ = 1, the radiation
chamcterlstic of the dipole on the disk is practlcally the same as
7 in the case of the dlpOle in free space (or on the disk at ¢ = 0).
' When e = 3, the radlatlon characteris‘bic is already divided into two

1obss wherwpon the rear lobe is appro:d.ma‘bely one~third the size of

the forward lobe, Vhen c = 5, the radidtion characteristic also con= .

- sists "of two lobes. ,But the shading phenomenon here is already quite
clearly e'cpressed, and a smooth conversion from the i]luxrd.nated into

“the shaded zone takes place.

Comparing with the rgdia‘cion characteristics of.a sphere, we see

‘that for-alpha = 3, the sphere does not quité produce a shaéing, and

ved for Release 2013/02/14 : CIA-RDP 1043R001700010009-9

for alpha = 5, this phenon{enon is expressed ve‘ry poorly. The smooth
conversion (without oscillations) from the illuminated zone into the
shaded appears in the sphere only at values alpha ~~ 15 ( '2, »
Tig. 6). '

Thus, at one and the very same (investigated by us here) values
of the parameters ¢ and alpha, proportional to the ratio of the body
radius to the vave length, the disk gives a considerably greater
shading then the sphere. It should be mentioned however, that the
problem of comparative effectiveness of radiati.on shading by the disk
and sphere at greater ;lalues of ¢ and alpha, requires additional in-
vestiéation.

The oblate spheroid should occupy. an intermediate position be-
tween the disk and sphere. The calculation of its radiation charac-
teristics during excitetion with an axial electric dipole (formula

1,5) does not represent any great difficulties,

Par, 2 - Horizontal Magnetic Dimle on a Disk,

The conductive surface can become excited not only m.th the aid
of an elementary electrlc dipole but also with the aid of a slot or,
system of slots, It is therefo"e interesting to explain the type of
characterist:.e of an elongated or oblate spheruid excitable by an .
elementary slot, cut, for example, nearlthe ‘apex eta = 1 of the
spheroid, This elementary slot can be considered &s an éiepenééﬁ

magnetic-dipole having a moment

m':m',‘ ) ' » 7{2.!)
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directed along the axis x and oriented on tlie axis z at the point
xd = x:ll, ‘eta = 1 at xiy = X (d = xio is, as above, the equation
of the surface of -the spheroid).

However, a solution of this problem for an arbitrary xio, as well
as a solution of ‘t}_xa problen concerning the diffraction of a plane
electromagnetic wave on an ideally conductive spheroid, has not been
obtained up to this time,

It is possible only to solve the problem'for )d.o =0, i. e,y
the problem concerning the diffraction on en ideally conductive disk,
It is assu.me.d in this.case (see g E
Tig, 4) that- the disk is excited
by thé magnhetic dipole (2.1)
oriented on the point :d. = )dl,
etaz1(z=2 = fidy, X=¥z0).

Ve have confined ourselves to

this arrangement of the magnetic :
i Figure 4
dipole because within the boundaries

produced by the dipole a case of an elemehtary slot on ‘the disk is
derived ()d._L = 0) and plane wave normally falling on the disk (xil =
infinity), which interested us,

- In the role of poéen‘cials we select first the components TT::

and r!,_ . of the Hertzian magnetic’ vector rl) bound with the

fields E and H by formulas

E=ilkrot1l | :
. 2.
H=graddiv Il |- k21 i @2

§:ane t:he components of the Hertzian vector of the primary field of
the megnetic dipole are

0 Y
M =me

R
S )
Hy = nz’ =0

R=VriHz—z)x 4)

and r is the radius vector of the observation point in the cylin~
drical s}»{steﬁn of coordinates then the Hertzian vector for the entire
field has the form of
=r4m,
l'Iy =0,
n=nm,

(2.5)

In this case the index 1 designates the potentials ‘of the
secondary field formed by the currents or;ginati‘ng (generated)‘ on the ®
disk, o .

vInaslﬁqch as the component n; does not depend on phi then the
secondary field, by virtue of the. disk symefl’y, should alse not- depenvd
on phi, i, e., ) ) :

=T M =0, 940 () =0 (r, 2. (26)
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The corﬁponent FIZ ‘will be sought in the form of

2.7)
: =Y (r, 2) cos @, (¢2)]

The magnetic Hertzian vector ” in the eylindrical coordinates
- will then heve components

M,=®cos ¢, ﬂv—:—ﬂ)sinkp, M,=W¥cosy, (28)

. .a;xd“.‘hhe field will be expr;ssed through § ?nd Pei in the following
. manner ‘
iksing [‘(’,-z’— —L -r]; H, =cos® [—‘,‘7% + ],
ik cos ¢ ["g'z ""‘] i H,=—sin q:\lr + kza)] A9
:,=—i/gsin\o3;; . H'=cos‘¢[‘%+k2‘lf],
where; £;01; t‘he purpose of brevity, we designated

o | 9%
L=r 7oz

The boundary conditions .
’ Er=E'=0 r<f. z2=0)

- for Phi and Psi will be written as follows

<t 2=0)

vhence 1t is derived that on the disk

o 1 !
F=7"r , (2.13)

By integrating equation (2,13) and by utilizing any of the given

ratios (2.12) we will obtain the boundary conditions in the form of

(r<f, z=0) (2.14)

where G is a certain constant, subject to determination from addi-
tional conditions, Thus in a cylindrical system of coordinates it
is possibie to obtain simple boundary conditions for i;,hs potential
Phi and Psi, which we will now seek in the form of decompositions
in accordance with spheroidal functions,

The fields and boundary conditions in an oblate spheroidal

system of coordinates are written in the form of

£y =tk coss{ e [n D G- | -
HT=——,ISII1<9{_,,(€+§_,‘,)'[E'%—‘-.W%}-|— L Ll
Treravemew CHEL |
' =T + e}
& =Cin

Y=ciVT=n |

(E==0). - (2.16)
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Since the Descartes components of the Hertziam vector satisfy '
the wave equation, then, by virtue of (2.6) end (2,7), the functions
ﬁhil (x-,. 2) anﬁ psi (r, 2z) should be decomposed in accordance with
the spheroidal functions with azimuthel indices m z O and m = 1
respectively. ‘Since , with respect to infinity, they should satisfy
the c9ndition of radiation, these decompositions should be sought in

the form of

o, ) = E ARD (—ic, #) SP (—ic,n),  (2.17)

W, 1,)—23, RS (—-ic, #) SV (—ic, m).  (2.18)
A=)
As to the potential of the secondary field Phio (xi, eta) »

then according to formulas (2,12) and (2.14) of report (1) we have
Phi® (xt, eta) = 2ilmx times
S(— Loy

e Rout (— io i) Re!y (e, &) Spi(—ic, )
4,

1=

E>4) (2.19)

Do (%, 1‘) =2 k/nf X
R, l(—~ ic, t:.)R,, h(=-ic, i

S (—
/ 2 Ny, ,(—m)
G<E)- (2.20)

The coefficients A, and By are obtained from the boundary con-

i) 8y (—ic, m)

dition (g.lé) by utiiizing the orthogonality of the angular functions

in'the form of -

ved for Release 2013/02/14
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-- Cd
St ie, 1) R (— ey i%) gz RV (—ic, 10)

=—2ikm B 1= 1) : 4

R (— e, i0)

‘(—w)

et

N1 (— i) 5 R (— Lo, 10)

d ! (—ic)

4
Bit)=5-Cf Ny, 1 (=1e) Ry (— e, 10)"

Here and everywhere below it was designated

R(—- ic, 10)_[ R(—ic, ti)J " (2.22)
1
We 1ike to call attention to the fact tgxat ST n}) )l (- 1o,

10) converts iuto zero at an even I (see (3), pp. 70-71). Since
in this case dl )L is different from zero only at an odd Z and

1’1 - only at an even ! , then

A;=0 npu =0, 2,...]~

B,=0 npu I=1,3,... . (223)

Consequently, the line (2,17) is summarized actually only by
the odd, end line (2,18) = only by the even indices I.

In order to determine the tant C, it is ry that'the -

radial component of the field-free (complete) current on the edges, of

the disk should convert into zero, i, e., (expressing the current

density in CGSM units) in order .that

= (Hy—HH=0 npi r=f, z=0 (2.24)

_or that ditto )
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By using formilas (2,15), we will derive -that the. condition

(2.55) takes place provided the.term

[dw(o 1) +d¢(0 —n)]+

1 W (0, n) oW (0, —v)
g [T

(2.26)

+

at eta~—> O is an infinitely small value of much Higher order than

eta. (Under the sign d:ltg ehi 0, -eta,

and below, we mean the derivative according to eta, in which instead

and so on, written here

of eta it uas’ substituted with -eta).
Ve went .to mention that the component Hgsi of the primary magnetic

field is a continuous function at z =¢ Z1s particularly

0 0
Holempo=Hg s (2.27)
and consequently, the condition (2,25) for the primary field is ful-
filled automatically, Consequently in (2.26) under Phi, we can under-
stand the function Phil corresponding to the secoﬁdax’y field and the

constant C is determined frém the requirement that the' value

ARS) (—ic, 10)[_ S (—ie, m)+
+Eso,1 (e, —"’I)]"‘
B’. RO (— e, i0)[S{Y (—ie, m)+

+S{8 (i, —)] (2.28)
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at eta —3 0 should be infinitely small of much higher order than eta.

Since .d___ S(l) (
- deta 0,1
an even Z_ ‘are the even functions of eta (formula 1.7 in report (1)),

-ic, eta) at an odd I and s:E’l)z (~ic, cta) at

then they decompose into Maclaurin's series having only even degrees
eta. Consequently, the term (2.28) will satisfy our requirement,
provided it,s first member (containing eta in zero degree) of éecom-

position into the Maclaurin's series converts into zero, i, e,, if
s . €oy

;2 ARG (—ic, rO)‘,,) Siit (—ie, 0) 4

T=1,3,..

_,_2

02, .,

d .
) 45 R (—ic, i0) S} (—ic, 0)=0.  (2.29)

Using the ratio (1.28) of report (1) and keeping in mind that
(1)
R (~ic, 10) at an odd 1 converts into zero (3, pp. 70-’71) we

wil'l. obtain the constant C in the form of

C_"—_ Ci)=3¢ CI (El),

St ) R =ie, tey) d
N, 4 ey
o F R},a (—ic, 10) l( e, 0)

i=1,3,..,
CiE)=

T . —_—

(@31 -
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i aP! RY) (e, i0) {
T= — e —— & s{k—ic, 0)—
=10 Ny g REN—le, 0y 20
avt . pe '
o g5 RS (—icrio)
—2
i=0,2....

(1),
-———-————NMR(I?}(_M' ) S,,1(—ic, 0). (2.31a)

In this way, the coefficients Al and Bl of the decompositions
‘ (2.17) end (2.18) of the potentials of the secondary field are now
completely determined,
In the wave zone, i, e,, at xi —2 infinity and exi — in-
finity, the fields (2.,15) have the form of
E =ikcosg [ n

- R}
o |0 (2.32)
Hv = — k%sing®,

By substituting in these formlas the decompositions (2.17)
and (2,18) for Pnit and fsi, o which the asymptotic fornnﬁ& (1.27)
of report (1) should also be appliéd, e will obtain terms in the wave
- zone for the secondary field excitable by the magnetic dipole (2.1),

oriented on the disk in point xi - ;d__L, eta = 1,

Par, 3 Diffraction of a Plane Wave on a Disk,

We w:.]_'l aésume that' the horizontal magnetic dipole oriented on

the disk (Fig., 4), stends on axis z and retaining orientation departs

18k

int i " .
o infinity so that eta, = 1, x, —3> infinity, Another condition
necessury will be that c)d.l—? inf;’mity. TheHertzian vector of the

primary field (2,3) will then acquire the form of

o__, e* e o :
Me=m = —e™", ), =n)=0, . @)

and consequently in this case the primary field represnts a plane
wave normally falling on the disk ‘

vu o
£y === pMe™ (3.2)

with an amplitude

M 2 1kz,
=lk2m T ‘ (3,3)‘

In order to obtain the diffraction field of a.plane va"ve, it is
necessary to write o) —> infinity, oxi) ——p infinity into the
terms fo’rJLl(le) end Gl()cl,l) of the previous paragraph., Then, .taking
into consideration (1.,27) in (1), we can write ) '

: cﬂ-z.'

Cioo)=— 5z Co. - (@4

T R
(==t ——1 7 @ ) .

d . d S (—ic, 0

Nou7z K2 (—ic, io) " o (—ie, )

7 —. @5
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and the value T is determined by formula (2.31&), whereupon according

t0.(2.30) in this case

L3 glkny 3 3.6
C=—" 5 Cy= — i MC. (3:6)

fe 2

oM
A(x)=— },;f a=

(i) eS{) (e, 1) - R (—ic, 10)-|- Cyd )

2M

=

Nos d’ Rul(_“' i0)
M
By(o0)=— kY Coby=
M cdy’

ek ‘NI.IRI,I (—ie, i0)

By substituting the terms (2,7) in formulas (2,32) we will
obtain the. secondary field of a plane wave in the wave zone, in the
form of

M3 iR
—_ — () S
Hy=E,=—; V' (B)cosy,
Mc2i gikr

Ey=H =— o V& @®)sing,

where
\.tl)(a):—é—{cosﬂg (—i)f*‘a‘S ) (—ic, cos®)-

Fsind-2c,y) (i 5,8 (=i, coss)

l=0,2,... .9

!
o
VO =% (—iy+ ‘HIS“’(—-M cos §), J

_ tendency of V(l) (0) "and v

vhere the coefficients 51 and b, are fixed by ratms (2. 7). The
functions V(l) ( F ) and V(z) ( ,J-) are the complex characteristics
of the secondary field of the plane wave falling normally on the disk, .
It shoTxld be mentioned that our adopted-standardization of these func-
tions, as will be shown below, (see 3.23) warrants at 129‘ =0 the

@ - (0) toward 1, when ¢ w——tp infinity,
when c é 1, formilas (3 8) acquire the form of

—H0=L-?_—/—M"’ o cos(p,

4} (3.10) -

Ey=H, = M/——-—— cos ¥sing,

i. e, ,’ for infinitely long waves, the secondary field of the plane
incident wave in the wave zone is such as if it wuuld be radiated by
an electric dipole with a moment

menmer,

) 4c T
L-—-—lﬁnsm?.

—— 2 14
f.——-a— T
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© or in cylindrical coordinates

vhere f is the radius of the disk,

At greater magnitudes of the parameter ¢, it is possible to obtain

approximated formulas for the secondary field in accordance with Huygen's

principle, For this it is necessary to take into consideration that
the x;nagnetic field on the disk has the very same magnitude as it would
have had if, instead of a disk, we would investigate an infinite sur-

face, i, e.,

H )y =2M. C (319

Thig formula is known to be incorrect on the edges of the disk, but

at distances of the order of a wave length from the edge, it can already.

be ‘considered as equiteble. If ¢ = kf is great, i. e., if

c=hf=2Lx1,
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takes place then the width of the band, where formula (3.14) is in-
correct, is small in comparison with'the radius of the disk and in

these ‘directions in which the secondary field of the disk is not close

“to zero "the edge effect" is smell in comparison with the basic one

which depends upon the area of the disk,
In the hypothesis of (3.14) the current on the disk in the CGSM

system is
M 316 .

and a certain potential in the point of observation:P will-have a
o

single component

_r IRR E
A’__S/y eR( ds, @17y

.

whete R' is the distance from the point of obaez;vafién to the .
Poﬁt ofintegration, and the integral is ‘taken according to the,.upper !
slide of the disk, ) ‘ o “ 4

T'a.k:h;g mt6 considération that for the wa;r‘eAzalt;e :

’ R'=R'—rsin8063(@—-9’), o i3'18)"
where R, 49 » psi are the spherical coordinates of the obsﬁr;{atioﬁ

point i’o,and r and psi' are thé cylindrical coordinates' of the intégraﬁion

189
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point on the disk and by using the lmown formules

P
Jo(2)= %— S gTizeusy de

. 0

zil, (2)= S 2Jy(2)dz,

we will obtain

U!R Ji(csin®)
csind

A,=Mp (3.20)

and the approximated formulas for the field will have the form of

R icsy (¢ sin 9)
&R sing COS¢® i
euue icl (¢ sin 0) J (3.21)

—Hy=E,=M

EO_H M sind cosﬂsmq;

Finally, comparing formulas (3,21 and (3.8) we should write

2 Jy(csind)
V“)(a) =7 lsln(’ 99
vy (0) — % Ji(csind) cos®. (3 )

sin §

Tt should be mentioned that our selected standardization.of

functions V(l) and V(2) gives in the case of the Huygen's principle, )

1. e.y at;: ? 1, velues

VO 0) =V 0)=1,
(
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which also justifies its introduction,

' The-radiation characteristics of the disk which prodice the electrq; ‘
magnetic E‘;.sld in He and E- planes of the incident wave ra poc‘crvely
‘were caleulated by us for ¢ = 1.3:and 5 according to formilas (3 9),
and for ¢ : 3and & = 5 also in accordance with the approximated formulas - .
(3.22). "l'he results qf these calculations are given in the Da‘scartes
system of coordinates in Fig, 5 ~ 7, whereby the dotted ‘lines represent,
curves caJ:culated according to the approximated formulas (3,22), The
Descartes- system of coordinates is more favorable in this case because
it gives a better representation of the behavior of the radiation
characteristics in the vicinity of the minimums,

Starting with analysis of characteristics, we wish to mention that
all characteristics are symmetrical relative to direction 19‘ = 90°,
as also should have been the case for the flat and infinitely thin :
disk; in this case, the characteristic v(2) (& ) conve‘rts'into zero
at n9 = <7)0‘) The explana‘bion of this circumstance is evident from
Tig, 8, The incident wave (3.2) generates, by virtue of 'bhe symmetry,
such cnrrents on the disk that their component along axis X are abla
to radiate in direction 49' = 90°%, they are being )n}ltually al?sorbc.edl
and the undbsorbed components accordin:; to y along axis y are non-'
rad:.ating. In the H-plane in direction, /\9' 90 'y the’ radiation is

C v (90) #0].
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Turther, everywhere are the ratios

.“,u’(())=vl‘-')(0): V‘”( P V"‘"(n), ‘ (3.21)

vhich is immediately evident from (3,9) since at ,\9' =0 and 19‘
= 7L, the second item in V(l) (9’) disappears, In directions *

20emd F =7 , the functions V) (o) ana ¥ () have -

maxima and’ an increase in the parameter c brings these maxima close

to unity,

The aepproximate functions (dotted line) are always equal to one

at 49' = 0% and 49' = 180° and have a course qualitatively very close

to the slope of accurate curves, The meximum difference between the

i
approximate and accurate takes place, as it should have been, in the

minimums, vhereupon the approximate functions in the minimums convert .

to zero,
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‘W wish to mention that an ;inci‘ease in parameter ¢ will be .fo]lowed
by a sinking in the mininmums of the accurate curves, The divergence

in the calculated values of cheracteristics computed in accordance with

accurate end approximetc forrulas in the

vicinity of maxima at ¢ = 3 does not
exc‘eed 15%, and at ¢ = 5, does not
sxceed 5%,
It, is also :Lnterestmg to compare the
repults obtained during the calculation
of the diffusion coefficient alpha
(calculated according to accurate and
' approximate formulas)
a=:R i-’E—'] (3.25):
where | 89| 1is the amplitulp of the plane incident vave, and | B |
' is the amglituqle of the reflected field in direction opposite to the
) inci’den:b wave (in our casé 49’ ‘= 0) and effective zone of diffusion

sigma

4ma?, . (3.26)

We will bring forth the ratios of values alpha and signma, calculated

according to accurate formulas to the velues alphay end: sigmal, vhere

(3.27)

are obtainable by Huygen's prinéiple for the normel. falling of the
S .

wave on the daisk.

As 1s evident from the table, at c =5 thase ratios are nlrendy
quite close to unity, Upém a ifurther incraasa in parsmater ¢, 'the
approximate formulas should yield sb111 ‘more accurate resulps; .

In this way "the Huygen's Princdiple", applicable in 'hhs" gia'ssi—
cal theory of diffraction for the solution of the’ problem_{:oiqcei‘nihg .
the diffusion on a disk, offers quite satisfactory rqsuli;s for val}_‘l,&‘as‘

of the parameter ¢ Rz 5.

Par, 4 Radiation Characteristics of & Slot on a Disk, :
Let us assume that-the dipole with the magnetic monent (2. l) "

is now oriented on the very disk in its center, 1. el at :d.l =
0, eta = 1 (Fig, 9), vhich corresponds to

a unlluteral elementary slot, s;ot@ed on

the " disk along axis Xe In or:iei' to ;

obtain a secondary field, in this case

it is necessary to write x:l:L = 0 :Ln the

fcmu‘].asjfor Ay (xil)‘;énd By (:dl) of.»' §

Par, 2, Ve will then obtain
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4,(0)=— 2 w
c
Nou 7 d= RE(— ic,i0)
Cy(0) it

B LI
I(O) R N”R(‘?)(-— 5i0)

|
,l *.1

However, the term for tne constant. Cl (0) cennot be obtained in this
mer because if we should write xi; = 0 in form;lla (2.31) for Cl
(}d—l) » then the set obtained in the numerator will be unsuitable for
calculation. Thé method for effective determination of the constant
cl(o) will be described briefly below.

* The secondary field in the wave zone (see 2.32, 2,17, 2,18)

has the form of

—-—H:,:E' :—-k’/n V‘”(ﬂ)cos ®, (4.2)

=H =—Fmn e V‘q’ @) sing,

M gy — 2
W (8),—T{cos8~2 S"}(—-w,cos&) |

I=13...

—sind 2, (0) 5‘ B S (—xc cosd), }

1=0,2;.

1=13...

(2)
v —'—*S“So,(—xc cos-‘))

|IA-RDP81-01043R001700010009-9

l(— ic1) — €, (0}
No. 3§ R}. ) (— c,i0)
dy!

= (— i) ——m—————
fi=( y Ny (R (= 1c,i0) .
The components oi‘ the primary field are presanted by formilas .

= (—1)"*
(4.30)

—Hy E°=—Iz’m R cosbcosy,
Ey=H, =

and finally the entire field is.

(4.4)'

{AR :
—Hy=E,=— k’m—e——' V¥ (8) cos g,

Ey=H,=— km-"p— Vm (®)sing,
vhere

V® (8)=cos 84 V" (8),

V) =14V{(®) “9

are the complex radiation characteristics of fheﬁ@iak with a unila~ -

. teral elementary slot cut in its center.
-We will now discuss the conclusion of the formula for™ the

constnnt C (0). We will.apply for this porpose the prmciple of
reciprocity which can be uritten in the form-of el

mH, (P)) =m.H, (Pa)-_
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=)

where m, and m, are the moment of the dipoles in points Py and

"PZ" creating the fields Hl and H2. Under Hl and HQ’ we mean the
'secondéry fields because the ratio (4.7) should also take place for
.the primary fields, .'

We'will now investigate, in ‘points Py (xi =.0, eta = 1) and

Pi (=3 3 1, eta=z 1) the dipoles with equal moments m,

directed along exis ¥ (Fig. 10). The vatio (4.7) will then be written

-in the form of

Hz.x(Pl)=Hi,x(P2) -(4-8)

Hog (P g ==
2

=H P,y x- (49)
2

-

-

E.Fni'this case ’Hl,psi (_PZ)' 49’ -
0,‘fisi = __‘12‘(_____ designates

-bh; secondary field in the vave
Zone orienteci on the disk of the
dipole and is expressed by formulas
{4.2) and (4.3) in which it should

. ' ! o L
be yritten ,VO- - 0, psi = %[__ s R = 2. Next Hz,psi(Pl) | r&’: 0,psl = ——

is “the secondary field of the plane wave in the point xi = 0, eta = 1,
o ' S STAT
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By substituting foffmlas (2,15), (2.17), (2.18) and (3.7) in
ratio (4.9) we obtain a term é_'l.ready suitable for calculations

C,(0)= — L
y ! ; ’ (4.]0
c’E»(—- s d:i 86} (—ic) S )
I=13,... Nm'_ZE R(‘)?}(—ic,m)

whore ,
d .
' SH) (=~ 16,1) == {1 (~ ic,1)
g Y7 dqg V01 ’
L=Y (— iy —
1=13.... Noa F&~ R (— ic,i0)

— d o )
d¥ RY) (— ic,iv) I_W S (= ic,1) — 38!} (— ic,1) ”
+ Ca d -
t=1,3,... NO,I & Rf,?)(—ic,i())

d . ., i
dit g RP (= ici0) s, (— ic)

@11

1-<0,2.0. . N|'1 R(l'.il)(_ l;t‘,iO)

At o & 1 the secondary field of the slot in the distant zone 1s
_ 1" ,___.‘ 9 ffliu:f 4 mei . E el'kR
H:l—“E?_‘k ( 3 T 3n Slﬂzo)'_k_"cos(P

8mci elkR ' . . -
’E,',=H:'=k2—:';l?f"eTcosf}'sin<p T . (*+.12)

: .,
A R AR R A A AR s O I O ot Lt e ape DS oo S
i - - e B P A i AR

e SATIOIL

=

Tn this way formlas (4.12) show that the secondary field of the unilateral

- STAT
slot on the disk for small values of the parameter c does not represent .-

—
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ulpnre. dipole radiation in the wave zone,

The f\lnct:lgns 'V(l) (»‘9') and V(z) (:9') respectively charac-
"terize “the field og‘, radiation in the n‘neridional plane. containing the.
* slot (psi = 0) and in the meridional plane (psi = __7_2_._ ) which is

perpe(ndic\ﬂ.ar. to the slot, They were calculated in accordance with

formilas (4.6) and (443) for values of the parameter ¢ = 1, 35

- (Fig. 11), )

When ¢ = 1,'bg'th amplitude characteristics have two large

lobes, with the rear lobe only slightly smaller then the forward one,
When ¢ = 3, the sheding phenomenon is already clearly expressed and ‘
there is a smooth conversion from the illuminated zone to ‘the shaded
one, When ¢ = 5, a third lobe appears at the curve l V(z) ( -9' )e
The shading phenomenon and the smooth transition from the illuminated
zZone to the shaded one are preserved for this and other characteristics

as well,

A éomparison vith the radiation characteristics of a sphere,

- excitable by en elementary slot, at sponding values of ‘the para~
meter alpha = k'rhg (see (2), Fig, 10-12 and 19-21) shows that-in this
c‘ase, there is a spec‘;;;f‘ic analogy between the sphere and disk,

However, it should be mentioned that if, during symmetric exci-
tation‘ of the sphere a;d disk by an electric dipcle, the disk pro-
duced a considerably higher screening for the investigated values

¢ then the sphere (see Par, 1), the same cannot be said in this

particular case. Nameiy, even ‘though for the value ¢ = 3, the disk

202
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sti1Y produces a greater screening effect than does the sphere, for the

value ¢ = 5, the difference is nevertheless ‘much smaller.

Figure 11

In conclusion, we wish to state that the strict theory of diffrac-
tion of electromagnetic waves on a disk was also investigated in arti-
cles (4 - 11), published (with the exception of (4) and (5)) after
the givex; report had already been completed,

.It seems to us that our report is nevertheless of eurrent
interest because the method employed differs from the uné desc;'ibod
in the erticles mentioned above, and the nurerical data greatly

supplement the data alreedy available in literature, .
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